期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习情感分类模型的个性化抑郁症护理策略
被引量:
21
1
作者
袁丽洁
武卓
+2 位作者
李敏
雷涛
祝婷
《护理学杂志》
CSCD
北大核心
2020年第22期85-88,共4页
目的探讨人工智能技术在个性化抑郁症护理中的应用,实现精准护理以加速抑郁症患者的康复。方法将60例抑郁症患者按病种和病情分层随机分配为对照组和观察组各30例.对照组采用传统护理方法;观察组采用基于深度学习情感分类模型分类后的...
目的探讨人工智能技术在个性化抑郁症护理中的应用,实现精准护理以加速抑郁症患者的康复。方法将60例抑郁症患者按病种和病情分层随机分配为对照组和观察组各30例.对照组采用传统护理方法;观察组采用基于深度学习情感分类模型分类后的个性化护理方案,即利用脑电图像(EEG)采集设备获取大量带标记的脑电信号数据构建EEG情感训练库,标记抑郁症类型;通过深度学习情感分类模型识别抑郁症患者EEG信号对应的情感类别;根据其识别结果,采取相应的个性化护理措施。对两组患者在住院期间进行等间隔的抑郁量化评估和护理满意率调查。结果干预4周时,观察组汉密尔顿抑郁量表(HAMD)和自评抑郁量表(SDS)的评分显著低于对照组(均P<0.05);观察组干预8周时的康复率高于对照组,但两组比较,差异无统计学意义(P>0.05)。结论基于深度学习情感分类模型的个性化护理方法能显著缓减患者的抑郁程度,加快抑郁症患者的康复速度。
展开更多
关键词
抑郁症
人工智能
深度学习
情感类别
个性化护理
在线阅读
下载PDF
职称材料
题名
基于深度学习情感分类模型的个性化抑郁症护理策略
被引量:
21
1
作者
袁丽洁
武卓
李敏
雷涛
祝婷
机构
陕西省人民医院
医务处感染管理科
陕西省人民医院
医学装备部
陕西省人民医院保健办
陕西
科技大学电子信息与人工智能学院
陕西省人民医院
神经内科
出处
《护理学杂志》
CSCD
北大核心
2020年第22期85-88,共4页
基金
国家自然科学基金项目(61461025)。
文摘
目的探讨人工智能技术在个性化抑郁症护理中的应用,实现精准护理以加速抑郁症患者的康复。方法将60例抑郁症患者按病种和病情分层随机分配为对照组和观察组各30例.对照组采用传统护理方法;观察组采用基于深度学习情感分类模型分类后的个性化护理方案,即利用脑电图像(EEG)采集设备获取大量带标记的脑电信号数据构建EEG情感训练库,标记抑郁症类型;通过深度学习情感分类模型识别抑郁症患者EEG信号对应的情感类别;根据其识别结果,采取相应的个性化护理措施。对两组患者在住院期间进行等间隔的抑郁量化评估和护理满意率调查。结果干预4周时,观察组汉密尔顿抑郁量表(HAMD)和自评抑郁量表(SDS)的评分显著低于对照组(均P<0.05);观察组干预8周时的康复率高于对照组,但两组比较,差异无统计学意义(P>0.05)。结论基于深度学习情感分类模型的个性化护理方法能显著缓减患者的抑郁程度,加快抑郁症患者的康复速度。
关键词
抑郁症
人工智能
深度学习
情感类别
个性化护理
Keywords
depression
artificial intelligence
deep learning
emotion classification
individualized nursing
分类号
R473.74 [医药卫生—护理学]
R395 [医药卫生—医学心理学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度学习情感分类模型的个性化抑郁症护理策略
袁丽洁
武卓
李敏
雷涛
祝婷
《护理学杂志》
CSCD
北大核心
2020
21
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部