期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于YOLOv7-R的多车辆目标识别 被引量:4
1
作者 李珣 伍荣兴 +3 位作者 周慧龙 刘欣 高涵 王文杰 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第5期1260-1270,共11页
针对智能交通控制对于多车辆目标识别高准确率的需求,基于YOLO算法,提出一种改进的YOLOv7-R算法.将全局注意力机制(GAM)引入骨干网络,增强特征提取性能;利用全维动态高效聚合网络(ODEANet)重构主干网络,提高算法的鲁棒性与精度;使用上... 针对智能交通控制对于多车辆目标识别高准确率的需求,基于YOLO算法,提出一种改进的YOLOv7-R算法.将全局注意力机制(GAM)引入骨干网络,增强特征提取性能;利用全维动态高效聚合网络(ODEANet)重构主干网络,提高算法的鲁棒性与精度;使用上下文转换器(CoTNet)替换运算量巨大的可扩展高效聚合层网络(E-ELAN),来引导动态注意力矩阵学习,并降低浮点运算量;采用K-means++聚类算法优化先验帧,提高先验帧的匹配度.通过系统性的改进,车辆多目标识别的效率和准确度均得到提升.在自由流、同步流、阻塞流3种交通流下,分别进行了消融实验.结果表明:YOLOv7-R平均识别率分别达到97.13%、94.85%和94.60%,与基线算法相比分别提高了3.65%、3.20%和1.40%;算法的检测帧率分别为74.63、79.37和75.76帧/s.与基线算法相比,YOLOv7-R的浮点运算量降低3.10%,参数量降低13.37%. 展开更多
关键词 多目标识别 YOLOv7 车辆检测 注意力机制 特征提取
在线阅读 下载PDF
面向纺织生产环境的移动机器人定位方法 被引量:3
2
作者 李珣 李哲文 +2 位作者 张婷文 景军锋 李鹏飞 《纺织学报》 EI CAS CSCD 北大核心 2023年第12期170-180,共11页
纺织行业的智能化、绿色化是“双碳”战略中必须进行升级的内容,移动机器人的大量应用将是未来趋势,但是各类纺机中的电动机、传动机构等在生产过程中产生的电磁环境不利于机器人定位。为解决上述问题,提出一种多传感器混合滤波方法,通... 纺织行业的智能化、绿色化是“双碳”战略中必须进行升级的内容,移动机器人的大量应用将是未来趋势,但是各类纺机中的电动机、传动机构等在生产过程中产生的电磁环境不利于机器人定位。为解决上述问题,提出一种多传感器混合滤波方法,通过结合基于自适应蒙特卡洛定位(adaptive Mentcarto localization, AMCL)方法和无迹卡尔曼滤波(unscented Kalman filter, UKF)融合定位来保证定位的精度;将AMCL与轮式里程计、惯性导航、激光里程计结合使用,根据惯性导航数据对各传感器数据进行预处理减少误差的引入;并通过UKF滤波器进行局部姿态估计。最后,基于机器人操作系统(ROS)框架,利用Gazebo仿真软件构建无、有电磁干扰的纺织车间环境进行试验。结果表明:在无电磁干扰的仿真环境中,AMCL-UKF混合滤波算法定位精度相较于扩展卡尔曼(extended Kalman filter, EKF)融合定位算法、UKF融合定位算法,精度分别提升26.9%、26.0%。在有电磁干扰环境中引入误差减小36.7%。提出的定位方法能够有效提高移动机器人室内定位的精度,对于纺织生产电磁环境下具有较好的稳定性。 展开更多
关键词 纺织自动化 移动机器人 AMCL-UKF混合滤波 数据融合定位
在线阅读 下载PDF
基于自适应特征融合的小样本细粒度图像分类 被引量:2
3
作者 解耀华 章为川 +1 位作者 任劼 景军锋 《计算机工程与应用》 CSCD 北大核心 2023年第3期184-192,共9页
现有的小样本学习算法未能充分提取细粒度图像的特征,导致细粒度图像分类准确率较低。为了更好地对基于度量的小样本细粒度图像分类算法中提取的特征进行建模,提出了一种基于自适应特征融合的小样本细粒度图像分类算法。在特征提取网络... 现有的小样本学习算法未能充分提取细粒度图像的特征,导致细粒度图像分类准确率较低。为了更好地对基于度量的小样本细粒度图像分类算法中提取的特征进行建模,提出了一种基于自适应特征融合的小样本细粒度图像分类算法。在特征提取网络上设计了一种自适应特征融合嵌入网络,可以同时提取深层的强语义特征和浅层的位置结构特征,并使用自适应算法和注意力机制提取关键特征。在训练特征提取网络上采用单图训练和多图训练方法先后训练,在提取样本特征的同时关注样本之间的联系。为了使得同一类的特征向量在特征空间中的距离更加接近,不同类的特征向量的距离更大,对所提取的特征向量做特征分布转换、正交三角分解和归一化处理。提出的算法与其他9种算法进行实验对比,在多个细粒度数据集上评估了5 way 1 shot的准确率和5 way 5 shot的准确率。在Stanford Dogs数据集上的准确率提升了5.27和2.90个百分点,在Stanford Cars数据集上的准确率提升了3.29和4.23个百分点,在CUB-200数据集上的5 way 1 shot的准确率只比DLG略低0.82个百分点,但是5 way5 shot上提升了1.55个百分点。 展开更多
关键词 小样本学习 细粒度图像分类 自适应特征融合 注意力机制
在线阅读 下载PDF
融合Swin Transformer的立体匹配方法STransMNet 被引量:2
4
作者 王高平 李珣 +2 位作者 贾雪芳 李哲文 王文杰 《光电工程》 CAS CSCD 北大核心 2023年第4期74-86,共13页
针对基于CNN的立体匹配方法中特征提取难以较好学习全局和远程上下文信息的问题,提出一种基于Swin Transformer的立体匹配网络改进模型(stereo matching net with swin transformer fusion,STransMNet)。分析了在立体匹配过程中,聚合局... 针对基于CNN的立体匹配方法中特征提取难以较好学习全局和远程上下文信息的问题,提出一种基于Swin Transformer的立体匹配网络改进模型(stereo matching net with swin transformer fusion,STransMNet)。分析了在立体匹配过程中,聚合局部和全局上下文信息的必要性和匹配特征的差异性。改进了特征提取模块,把基于CNN的方法替换为基于Transformer的Swin Transformer方法;并在Swin Transformer中加入多尺度特征融合模块,使得输出特征同时包含浅层和深层语义信息;通过提出特征差异化损失改进了损失函数,以增强模型对细节的注意力。最后,在多个公开数据集上与STTR-light模型进行了对比实验,误差(End-Point-Error,EPE)和匹配错误率3 px error均有明显降低。 展开更多
关键词 立体匹配 Swin Transformer 深度学习 STransMNet
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部