期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多特征融合自编码器的无监督地震相分类研究 被引量:3
1
作者 王倩楠 王治国 +2 位作者 杨阳 朱剑兵 高静怀 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第1期370-378,共9页
地震相分类是地震数据解释中的一个重要步骤,是地震数据与沉积相的连接工具.为了提高地震相分类精度和减少对有限人工标签的依赖,本文提出了一种基于多特征融合自编码器的无监督地震相分类方法.首先,提出了一种混合卷积和变分编码的多... 地震相分类是地震数据解释中的一个重要步骤,是地震数据与沉积相的连接工具.为了提高地震相分类精度和减少对有限人工标签的依赖,本文提出了一种基于多特征融合自编码器的无监督地震相分类方法.首先,提出了一种混合卷积和变分编码的多特征融合自编码器,实现了地震数据中表征地震相的大量隐含特征提取.其次基于非负矩阵分解和K均值聚类实现了主特征分量分解和地震相聚类.实际地震数据应用结果和指标分析表明,本文方法提取的隐含特征趋于正态分布,且主特征分量中蕴含了不同地震相类别的响应,从而可以获得更准确的地震相分类结果.在渤海湾盆地东营凹陷古近系沙河街组湖相沉积中,清晰划分出了六类沉积微相的边界,有利于揭示三角洲沉积环境演变. 展开更多
关键词 地震相分类 多特征融合自编码器 卷积自编码器 变分自编码器 非负矩阵分解
在线阅读 下载PDF
基于广义Beta小波稀疏域混合约束优化的地震去噪方法研究 被引量:3
2
作者 张歧 杨阳 +2 位作者 魏千盛 王治国 高静怀 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2023年第8期3391-3402,共12页
地震随机噪声压制是鄂尔多斯盆地黄土塬、沙漠、戈壁滩等复杂地表区域低信噪比地震资料处理的一项重要任务.稀疏反演去噪是地震随机噪声压制的常用方法之一.ℓ_(1)范数和全变分(Total Variation,TV)正则化是稀疏变换域去噪方法中常用的... 地震随机噪声压制是鄂尔多斯盆地黄土塬、沙漠、戈壁滩等复杂地表区域低信噪比地震资料处理的一项重要任务.稀疏反演去噪是地震随机噪声压制的常用方法之一.ℓ_(1)范数和全变分(Total Variation,TV)正则化是稀疏变换域去噪方法中常用的两种正则化项.但是,ℓ_(1)范数是对ℓ_(0)范数的松弛,难以提供更稀疏的去噪结果;基于TV正则化项的方法容易引起阶梯状异常结果.因此,为了避免上述缺点,本文提出了一种基于广义Beta小波稀疏域混合范数优化的地震随机噪声压制方法和算法流程实现.首先利用广义Beta小波紧标架加快计算,获得具有更高局域化性的稀疏时频表示.其次是引入包括ℓp范数和TV正则化的混合约束项,克服单一正则化项的缺点.最后,利用鄂尔多斯盆地黄土塬区的合成地震数据、三维叠后地震数据和共反射点道集数据验证了本文去噪方法的有效性.结果表明:本文提出的去噪方法既能够有效抑制随机噪声、显著提高信噪比,让地震同相轴连续光滑;又能够准确保护有效信号,保持波组间的相对幅值,突出有利微小断层和含油气层的振幅形态. 展开更多
关键词 地震随机噪声压制 广义Beta小波 紧标架 混合范数 反问题
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部