为避免在城市作战中一个任务投入过多超过需求的剩余资源,影响其他任务的资源分配而造成作战时间延长,将多维动态列表调度算法(multidimensional dynamic list scheduling,MDLS)应用于城市作战资源调度。通过在算法的平台选择阶段做出改...为避免在城市作战中一个任务投入过多超过需求的剩余资源,影响其他任务的资源分配而造成作战时间延长,将多维动态列表调度算法(multidimensional dynamic list scheduling,MDLS)应用于城市作战资源调度。通过在算法的平台选择阶段做出改进,加入节约模块和支援模块,建立多目标规划模型。仿真实验对比结果表明,该技术研究可为城市作战资源调度提供理论参考。展开更多
当前的目标分割模型难以兼顾分割性能与推断效率,为此提出一种基于尺度注意知识迁移的自蒸馏目标分割方法。首先,构建了一个仅利用主干特征的目标分割网络作为推断网络,实现高效的前向推断过程。其次,提出了一种基于尺度注意知识的自蒸...当前的目标分割模型难以兼顾分割性能与推断效率,为此提出一种基于尺度注意知识迁移的自蒸馏目标分割方法。首先,构建了一个仅利用主干特征的目标分割网络作为推断网络,实现高效的前向推断过程。其次,提出了一种基于尺度注意知识的自蒸馏学习模型:一方面,设计了具有尺度注意机制的金字塔特征模块,利用尺度注意机制自适应地捕获不同语义水平的上下文信息,提取更具区分性的自蒸馏知识;另一方面,融合交叉熵、KL(Kullback-Leibler)散度和L2距离构造蒸馏损失,高效驱动蒸馏知识向分割网络迁移,提升泛化性能。该方法在COD(Camouflaged Object Detection)、DUT-O(Dalian University of Technology-OMRON)、SOC(Salient Objects in Clutter)等五个目标分割数据集上进行了验证:将所提推断网络作为基准网络,所提自蒸馏模型分割性能在Fβ指标上平均提升3.01%,比免教师(TF)自蒸馏模型增加了1.00%;所提网络与近期的残差分割网络(R2Net)相比,参数量减少了2.33×10^(6),推断帧率提升了2.53%,浮点运算量减少了40.50%,分割性能提升了0.51%。实验结果表明:所提方法能有效兼顾性能与效率,适用于计算和存储资源受限的应用场景。展开更多
在视觉同时定位与地图构建问题中,ORB(Oriented FAST and Rotated BRIEF)特征由于其高效、稳定的优点而受到广泛关注。针对ORB特征提取过程中存在的像点量测精度较低、特征聚集现象明显等问题,提出了一种适用于高精度SLAM的均衡化亚像素...在视觉同时定位与地图构建问题中,ORB(Oriented FAST and Rotated BRIEF)特征由于其高效、稳定的优点而受到广泛关注。针对ORB特征提取过程中存在的像点量测精度较低、特征聚集现象明显等问题,提出了一种适用于高精度SLAM的均衡化亚像素ORB特征提取方法。分析了精确特征定位的原理,对误差方程进行合理的简化并采用一种基于模板窗口距离的权函数计算方法,大幅降低了计算负担;设计了一种基于四叉树结构的特征均衡化方案,对包含特征的像平面空间进行有限次数的迭代分割,然后选取具有最优响应的特征。试验表明,本文方法进行特征提取的额外计算负担小于2.5 ms,在运行TUM和KITTI数据集时,ORB特征的量测精度分别为0.84和0.62 Pixel,达到亚像素水平,可以降低误差初值,提高光束法平差效率,并能够在满足特征总体分布规律的情况下,显著改善特征聚集的现象,有利于后续问题的稳健、准确求解。展开更多
文摘为避免在城市作战中一个任务投入过多超过需求的剩余资源,影响其他任务的资源分配而造成作战时间延长,将多维动态列表调度算法(multidimensional dynamic list scheduling,MDLS)应用于城市作战资源调度。通过在算法的平台选择阶段做出改进,加入节约模块和支援模块,建立多目标规划模型。仿真实验对比结果表明,该技术研究可为城市作战资源调度提供理论参考。
文摘当前的目标分割模型难以兼顾分割性能与推断效率,为此提出一种基于尺度注意知识迁移的自蒸馏目标分割方法。首先,构建了一个仅利用主干特征的目标分割网络作为推断网络,实现高效的前向推断过程。其次,提出了一种基于尺度注意知识的自蒸馏学习模型:一方面,设计了具有尺度注意机制的金字塔特征模块,利用尺度注意机制自适应地捕获不同语义水平的上下文信息,提取更具区分性的自蒸馏知识;另一方面,融合交叉熵、KL(Kullback-Leibler)散度和L2距离构造蒸馏损失,高效驱动蒸馏知识向分割网络迁移,提升泛化性能。该方法在COD(Camouflaged Object Detection)、DUT-O(Dalian University of Technology-OMRON)、SOC(Salient Objects in Clutter)等五个目标分割数据集上进行了验证:将所提推断网络作为基准网络,所提自蒸馏模型分割性能在Fβ指标上平均提升3.01%,比免教师(TF)自蒸馏模型增加了1.00%;所提网络与近期的残差分割网络(R2Net)相比,参数量减少了2.33×10^(6),推断帧率提升了2.53%,浮点运算量减少了40.50%,分割性能提升了0.51%。实验结果表明:所提方法能有效兼顾性能与效率,适用于计算和存储资源受限的应用场景。
文摘在视觉同时定位与地图构建问题中,ORB(Oriented FAST and Rotated BRIEF)特征由于其高效、稳定的优点而受到广泛关注。针对ORB特征提取过程中存在的像点量测精度较低、特征聚集现象明显等问题,提出了一种适用于高精度SLAM的均衡化亚像素ORB特征提取方法。分析了精确特征定位的原理,对误差方程进行合理的简化并采用一种基于模板窗口距离的权函数计算方法,大幅降低了计算负担;设计了一种基于四叉树结构的特征均衡化方案,对包含特征的像平面空间进行有限次数的迭代分割,然后选取具有最优响应的特征。试验表明,本文方法进行特征提取的额外计算负担小于2.5 ms,在运行TUM和KITTI数据集时,ORB特征的量测精度分别为0.84和0.62 Pixel,达到亚像素水平,可以降低误差初值,提高光束法平差效率,并能够在满足特征总体分布规律的情况下,显著改善特征聚集的现象,有利于后续问题的稳健、准确求解。