期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于分区缓存区重放与多线程交互的多智能体深度强化学习算法 被引量:5
1
作者 柴来 张婷婷 +1 位作者 董会 王楠 《计算机学报》 EI CAS CSCD 北大核心 2021年第6期1140-1152,共13页
近些年,深度强化学习(Deep Reinforcement Learning,DRL)已成为人工智能领域一个新的机器学习范式与方法论,它在许多高维度大状态的复杂空间任务中能够取得显著的成功.然而,传统的深度强化学习仍然存在着学习效率低、训练时间长的问题,... 近些年,深度强化学习(Deep Reinforcement Learning,DRL)已成为人工智能领域一个新的机器学习范式与方法论,它在许多高维度大状态的复杂空间任务中能够取得显著的成功.然而,传统的深度强化学习仍然存在着学习效率低、训练时间长的问题,在多智能体的行为决策研究中难以达到理想的效果.针对这些问题,本文提出了一种基于分区缓存区重放与多线程交互的多智能体深度强化学习算法(Partitioned Buffer Replay and Multiple Process Interaction,PBR-MPI).首先,该算法使用分区缓存区的经验重放形式,通过划分奖励空间来区分正面经验、负面经验与中性经验,并在训练时使用分层随机的采样方式抽取这些经验数据.其次,算法运用多线程的交互方式促进了智能体与环境的试错过程,通过智能体的多个克隆体并行的学习并整合它们的学习经验来训练网络模型的参数.然后,为了构建PBR-MPI算法的适用场景,本文根据目前多智能体系统(Multi-Agent System,MAS)的最新研究进展,将多智能体的信息交互方式归纳总结为集中式信息交互、全信息交互和欠信息交互三大类.最后,将新算法与其它的多智能体DRL算法分别在三种不同的信息交互场景中进行对比实验,用于验证和评价PBR-MPI的有效性及整体性能.实验结果表明,在智能体个数为5的多智能体目标追踪任务中,缓存区数为3、线程数为5的PBR-MPI算法的学习收敛速度平均提高了21%,训练效率平均提升了34%,并且在综合性能的评估中新算法的整体性能改善了50%. 展开更多
关键词 分区缓存区重放 多线程交互 深度强化学习 多智能体 信息交互 行为决策
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部