对于HPC用户来说,计算成本是迁云所考虑的重要因素之一,阿里云上提供的抢占式实例,是一种按需实例,旨在降低使用公共云计算资源成本,抢占式实例市场价格是波动的,通常远低于正常的按需实例,甚至达到正常按需实例的一折。抢占式实例一般...对于HPC用户来说,计算成本是迁云所考虑的重要因素之一,阿里云上提供的抢占式实例,是一种按需实例,旨在降低使用公共云计算资源成本,抢占式实例市场价格是波动的,通常远低于正常的按需实例,甚至达到正常按需实例的一折。抢占式实例一般会在创建时为用户保留一段最短时间,过后有可能会被释放,所以一般适用于无状态的应用场景。提出在公共云上的自动伸缩策略,其面向通用的HPC集群调度器,基于用户的应用软件类型、提交作业规律以及用户对性能和成本等多方面需求,自动在云上部署扩容计算资源,控制成本。对用户来说,可以做到“only pay for what you want and what you use”。基于公共云上丰富的资源规格类型和售卖方式,利用自动伸缩服务,抢占式实例,断点续算等技术可以配置低成本的公共云上HPC自动伸缩方案:用户提交作业的同时可以指定成本上限,自动伸缩服务自动在低于此成本的前提下寻找和扩容抢占式计算资源,同时利用断点续算功能保证作业在计算资源切换的时候可以继续运算。最后,通过LAMMPS和GROMACS两个高性能应用实例验证了该策略的可行性和有效性。展开更多
拥有千亿级别参数的大语言模型(large language model,LLM)已为今天的人工智能和云服务带来了巨大的技术和商业变革.然而,大模型训练与传统的通用云计算(例如,亚马逊EC2弹性计算服务)之间存在较多根本性的网络行为差异,从而带来了很多...拥有千亿级别参数的大语言模型(large language model,LLM)已为今天的人工智能和云服务带来了巨大的技术和商业变革.然而,大模型训练与传统的通用云计算(例如,亚马逊EC2弹性计算服务)之间存在较多根本性的网络行为差异,从而带来了很多新的挑战,主要包括流量模式差异造成负载难均衡(挑战1)、多训练任务通信竞争影响GPU利用率(挑战2),以及对网络故障的高敏感性(挑战3)等.因此,为通用云计算设计的数据中心网络技术(例如,网络架构、选路方法、流量调度,以及可靠性保障方法等)已不适合今天的大模型训练,这要求专门为大模型训练设计新型的数据中心网络以及配套的技术方案.介绍了阿里云专门为大模型训练设计的数据中心网络HPN以及多任务通信调度方法Crux解决上述3个挑战.HPN通过引入了一种2层、双平面(dual-plane)的网络架构,不但能够在一个Pod内高速互联15000个GPU,还能做到适用大模型训练的精准选路(解决挑战1).此外,HPN提出了一种新型的去堆叠双ToR(top-of-rack)设计来替代传统数据中心网络的单ToR交换机连接方式,根本性地避免了单点失效可靠性风险(部分解决挑战3).针对挑战2,Crux通过对GPU利用率优化问题的建模与证明,将该NP完全问题近似成GPU强度相关的流量调度问题.随后,Crux提出了一个方法优先处理具有高GPU计算强度的任务流,从而极大降低了多任务的通信竞争,优化了GPU利用率.与相关工作对比,Crux可以将GPU利用率提高多达23个百分点.HPN和Crux均已在阿里云生产环境规模化部署超过8个月,后续会持续演进迭代.在此基础上,进一步展望了大模型训练与推理领域可能的研究方向,为后续工作提供指导性建议.展开更多
文摘对于HPC用户来说,计算成本是迁云所考虑的重要因素之一,阿里云上提供的抢占式实例,是一种按需实例,旨在降低使用公共云计算资源成本,抢占式实例市场价格是波动的,通常远低于正常的按需实例,甚至达到正常按需实例的一折。抢占式实例一般会在创建时为用户保留一段最短时间,过后有可能会被释放,所以一般适用于无状态的应用场景。提出在公共云上的自动伸缩策略,其面向通用的HPC集群调度器,基于用户的应用软件类型、提交作业规律以及用户对性能和成本等多方面需求,自动在云上部署扩容计算资源,控制成本。对用户来说,可以做到“only pay for what you want and what you use”。基于公共云上丰富的资源规格类型和售卖方式,利用自动伸缩服务,抢占式实例,断点续算等技术可以配置低成本的公共云上HPC自动伸缩方案:用户提交作业的同时可以指定成本上限,自动伸缩服务自动在低于此成本的前提下寻找和扩容抢占式计算资源,同时利用断点续算功能保证作业在计算资源切换的时候可以继续运算。最后,通过LAMMPS和GROMACS两个高性能应用实例验证了该策略的可行性和有效性。
文摘拥有千亿级别参数的大语言模型(large language model,LLM)已为今天的人工智能和云服务带来了巨大的技术和商业变革.然而,大模型训练与传统的通用云计算(例如,亚马逊EC2弹性计算服务)之间存在较多根本性的网络行为差异,从而带来了很多新的挑战,主要包括流量模式差异造成负载难均衡(挑战1)、多训练任务通信竞争影响GPU利用率(挑战2),以及对网络故障的高敏感性(挑战3)等.因此,为通用云计算设计的数据中心网络技术(例如,网络架构、选路方法、流量调度,以及可靠性保障方法等)已不适合今天的大模型训练,这要求专门为大模型训练设计新型的数据中心网络以及配套的技术方案.介绍了阿里云专门为大模型训练设计的数据中心网络HPN以及多任务通信调度方法Crux解决上述3个挑战.HPN通过引入了一种2层、双平面(dual-plane)的网络架构,不但能够在一个Pod内高速互联15000个GPU,还能做到适用大模型训练的精准选路(解决挑战1).此外,HPN提出了一种新型的去堆叠双ToR(top-of-rack)设计来替代传统数据中心网络的单ToR交换机连接方式,根本性地避免了单点失效可靠性风险(部分解决挑战3).针对挑战2,Crux通过对GPU利用率优化问题的建模与证明,将该NP完全问题近似成GPU强度相关的流量调度问题.随后,Crux提出了一个方法优先处理具有高GPU计算强度的任务流,从而极大降低了多任务的通信竞争,优化了GPU利用率.与相关工作对比,Crux可以将GPU利用率提高多达23个百分点.HPN和Crux均已在阿里云生产环境规模化部署超过8个月,后续会持续演进迭代.在此基础上,进一步展望了大模型训练与推理领域可能的研究方向,为后续工作提供指导性建议.