期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于全局残差注意力和门控特征融合的CNN-Transformer去雾算法 被引量:1
1
作者 李海燕 乔仁超 +1 位作者 李海江 陈泉 《东北大学学报(自然科学版)》 北大核心 2025年第1期26-34,共9页
为解决现有图像去雾算法因缺乏全局上下文信息、处理分布不均匀的雾时效果差且复用细节信息时引入噪声的缺陷,提出了基于全局残差注意力和门控特征融合的CNN-Transformer去雾算法.首先,引入全局残差注意力机制编码模块自适应地提取非均... 为解决现有图像去雾算法因缺乏全局上下文信息、处理分布不均匀的雾时效果差且复用细节信息时引入噪声的缺陷,提出了基于全局残差注意力和门控特征融合的CNN-Transformer去雾算法.首先,引入全局残差注意力机制编码模块自适应地提取非均匀雾区的细节特征,设计跨维度通道空间注意力优化信息权重.然后,提出全局建模Transformer模块加深编码器的特征提取过程,设计带有并行卷积的Swin Transformer捕捉特征之间的依赖关系.最后,设计门控特征融合解码模块复用图像重建所需的纹理信息,滤除不相关的雾噪声,提高去雾性能.在4个公开数据集上进行定性和定量实验,实验结果表明:所提算法能够有效地处理非均匀雾区域,重建纹理细腻且语义丰富的高保真无雾图像,其峰值信噪比和结构相似性指数都优于经典对比算法. 展开更多
关键词 图像去雾 全局残差注意力机制 CNN-Transformer架构 门控特征融合 图像重建
在线阅读 下载PDF
基于残差变换器的并行傅里叶卷积修复算法
2
作者 李海燕 宋应清 +2 位作者 郭磊 周丽萍 陈泉 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第8期42-51,共10页
为解决现有图像修复算法因缺乏上下文信息和有效的感受野导致修复大面积随机破损时效果差且只能修复低分辨率图像的缺陷,提出了基于残差变换器的并行傅里叶卷积修复算法.首先,提出基于变换器的改进残差网络模块提取待修复图像的纹理特征... 为解决现有图像修复算法因缺乏上下文信息和有效的感受野导致修复大面积随机破损时效果差且只能修复低分辨率图像的缺陷,提出了基于残差变换器的并行傅里叶卷积修复算法.首先,提出基于变换器的改进残差网络模块提取待修复图像的纹理特征;然后,设计并行快速傅里叶卷积模块增强损失图像的高度有效感受野捕捉结构信息;最后,提出门控双特征融合模块交换和结合图像的结构与纹理分量,融合上下文特征,改善生成纹理的细粒度.在两个公开数据集上进行定性和定量实验,实验结果表明:所提算法可有效修复结构复杂且纹理精细的随机不规则大面积破损区域,生成结构合理、纹理细腻和语义丰富的高保真图像,并能用于高分辨率图像的目标移除. 展开更多
关键词 图像修复 残差变换器 并行傅里叶卷积 门控双特征融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部