期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
复合Li_2SO_4质子传导膜的制备及电化学性能 被引量:1
1
作者 钟理 朱斌 Chuang Karl 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第7期1-5,共5页
制备了以Li2SO4为基体、A l2O3为填充物的复合质子传导膜.采用电化学阻抗波谱分析法(EIS)研究了掺杂不同组分(Li2WO4或Na2SO4)以及掺杂不同比例时制备的不同厚度的复合质子传导膜的离子(电)传导率.分析结果表明,在Li2SO4中掺杂一定比例... 制备了以Li2SO4为基体、A l2O3为填充物的复合质子传导膜.采用电化学阻抗波谱分析法(EIS)研究了掺杂不同组分(Li2WO4或Na2SO4)以及掺杂不同比例时制备的不同厚度的复合质子传导膜的离子(电)传导率.分析结果表明,在Li2SO4中掺杂一定比例的Li2WO4或Na2SO4均可提高膜的离子传导率,Li2WO4对复合膜性能的影响优于Na2SO4.扫描电镜(SEM)分析显示,掺杂Li2WO4的复合膜结构更加致密和紧凑.实验结果表明,由Li2SO4、Li2WO4和A l2O3制备的复合膜的适宜组成为75%Li2SO4/Li2WO4混合物(Li2SO4与Li2WO4摩尔比为9∶1)+25%A l2O3,其离子传导率在600,650,700和750℃时分别高达0.16,0.38,0.46和0.52S/cm,适宜的膜厚为0.8mm.文中还研究了以H2S为燃料、复合Mo-N i-S为阳极、复合Li2SO4为质子传导膜、复合N iO为阴极、空气为氧化剂的单电池的电化学性能,发现Li2SO4+Li2WO4+A l2O3复合膜的电化学性能较优. 展开更多
关键词 质子传导膜 燃料电池 电解质 硫化氢 电化学性能
在线阅读 下载PDF
H_2S含量及流量对燃料电池性能的影响
2
作者 钟理 Chuang Karl 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第9期123-127,共5页
采用溶胶-凝胶法制备了纳米级Li2SO4+Li2WO4+Al2O3复合质子传导膜,考察了在不同H2S气体含量、体积流量和操作温度下,结构为H2S、(复合MoS2阳极催化剂)/复合质子传导膜/(复合NiO阴极催化剂)、空气的燃料电池的电化学特性,并比较了MoS2与... 采用溶胶-凝胶法制备了纳米级Li2SO4+Li2WO4+Al2O3复合质子传导膜,考察了在不同H2S气体含量、体积流量和操作温度下,结构为H2S、(复合MoS2阳极催化剂)/复合质子传导膜/(复合NiO阴极催化剂)、空气的燃料电池的电化学特性,并比较了MoS2与复合MoS2催化剂的性能.结果表明:H2S含量和体积流量增加,提高了阳极侧气体扩散速率和电化学活性组分,使燃料电池的电压、输出电流与功率密度提高,电化学性能变好;即使气体中的H2S含量低达5%(摩尔分数)时,也可作为电池的燃料用来发电;操作温度增加,质子传导膜的电传导率和电化学反应速率增加,电池的输出电流与功率密度提高;复合MoS2催化剂比MoS2催化剂具有更好的性能和化学稳定性;当采用纯H2S作为燃料,复合MoS2作为阳极催化剂,通入阳极和阴极侧的H2S和空气的体积流量分别为35mL/min和100mL/min,操作温度为650、700和750℃时,燃料电池最大输出功率密度分别为12.4、52.9和130.0mW/cm2,最大电流密度分别为45、281和350mA/cm2. 展开更多
关键词 燃料电池 硫化氢 质子传导膜 阳极催化剂 电解质
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部