期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于M估计算法的三维点云平面拟合方法研究 被引量:1
1
作者 杨少舟 龙东平 +2 位作者 陈继尧 吴士旭 徐先懂 《电子测量技术》 北大核心 2024年第5期70-76,共7页
通过激光传感器获取的三维点云难免混入噪声和异常点,导致点云平面的拟合精度降低。为解决该问题,本文提出了一种结合M估计样本一致性(MSAC)算法和主成分分析(PCA)法拟合点云平面的方法。该方法首先通过MSAC算法去除点云数据中的异常点... 通过激光传感器获取的三维点云难免混入噪声和异常点,导致点云平面的拟合精度降低。为解决该问题,本文提出了一种结合M估计样本一致性(MSAC)算法和主成分分析(PCA)法拟合点云平面的方法。该方法首先通过MSAC算法去除点云数据中的异常点,获得较为理想的点云平面,然后使用PCA方法对保留的点云数据进行平面拟合,以获取更加精确的点云平面参数。使用电池托盘作为被测物,应用3D线激光轮廓传感器扫描被测物并将点云数据传输到计算机进行处理。通过设定的仿真数据和电池托盘点云数据进行实验,发现本文方法与随机采样一致性(RANSAC)结合PCA、最小平方中值(LMedS)结合PCA的方法相比,在耗时接近的情况下,能够显著降低异常点对点云平面拟合的影响,获得更精确的平面拟合参数。对两个部分的电池托盘点云滤波处理后进行平面拟合时,能够发现本文方法与其他两种方法相比,标准差分别降低了28.6%和22.5%%、24.0%和29.0%,该方法具有较高的平面拟合精度和实用性。 展开更多
关键词 点云数据 异常点 平面拟合 M估计 主成分分析方法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部