期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
具有全局记忆的LF蚁群聚类算法 被引量:5
1
作者 王昕宇 罗可 《计算机工程与应用》 CSCD 北大核心 2019年第20期52-57,113,共7页
针对传统的LF蚁群聚类算法中存在的收敛速度慢,蚂蚁空载导致的资源浪费以及易陷入局部最优等问题,提出了一种蚁群改进算法。算法初期采用直接分配原则,直接将蚂蚁随机放在数据对象上,并生成随机的全局记忆,在聚类时负载蚂蚁移动受到全... 针对传统的LF蚁群聚类算法中存在的收敛速度慢,蚂蚁空载导致的资源浪费以及易陷入局部最优等问题,提出了一种蚁群改进算法。算法初期采用直接分配原则,直接将蚂蚁随机放在数据对象上,并生成随机的全局记忆,在聚类时负载蚂蚁移动受到全局记忆的指导,利用余弦相似度判断最相似的记忆中心,并向该记忆中心移动,全局记忆在一次迭代完成后更新。当蚂蚁拾起数据对象失败时,为了减少蚂蚁再一次的随机移动所带来的资源浪费,采用相异原则将蚂蚁移动到下一个数据对象上。改进的算法在UCI数据集Iris、Wine、Glass和Robotnavigation上进行验证,算法在保证原有算法准确率的基础上明显提高了收敛速度。 展开更多
关键词 LF蚁群聚类算法 直接分配 全局记忆 余弦相似度 相异原则
在线阅读 下载PDF
具备反向学习和局部学习能力的磷虾群算法 被引量:5
2
作者 肖素琼 罗可 《计算机工程与应用》 CSCD 北大核心 2018年第18期34-39,共6页
针对磷虾群算法易陷入局部最优、收敛速度慢等缺点,提出了具备反向学习和局部学习能力的磷虾群算法。利用混沌映射和反向学习的思想初始化种群,根据算法迭代次数自适应调整学习维度,对精英个体进行反向学习,能有效保持种群的多样性,选... 针对磷虾群算法易陷入局部最优、收敛速度慢等缺点,提出了具备反向学习和局部学习能力的磷虾群算法。利用混沌映射和反向学习的思想初始化种群,根据算法迭代次数自适应调整学习维度,对精英个体进行反向学习,能有效保持种群的多样性,选取精英群体,通过自适应的Lévy飞行分布和改进的差分变异算子,提高种群的局部学习能力。这种新颖的元启发方式能加速收敛速度的同时可以保证磷虾群算法的鲁棒性。通过对8个基准函数进行仿真测试,实验结果表明:与最近的KH优化算法相比,该算法在收敛速度、收敛精度等方面得到明显改进。 展开更多
关键词 磷虾群优化算法 种群初始化 精英反向学习 差分变异算子 局部学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部