期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于ESC-TransUNet网络的脑出血CT图像分割
1
作者
谭佳慧
文琛言
+1 位作者
黄巍
胡凯
《计算机科学》
北大核心
2025年第S1期99-107,共9页
针对脑出血CT图像处理中遇到的出血区域空间位置、形状、尺寸多变性以及与周围组织强度值相近导致边界难以确定等挑战,提出了一种改进TransUNet的图像分割模型(ESC-TransUNet)。该模型首先在上采样前增添了显式视觉中心(Explicit Visual...
针对脑出血CT图像处理中遇到的出血区域空间位置、形状、尺寸多变性以及与周围组织强度值相近导致边界难以确定等挑战,提出了一种改进TransUNet的图像分割模型(ESC-TransUNet)。该模型首先在上采样前增添了显式视觉中心(Explicit Visual Center,EVC),能够捕获图像中远距离像素的关联程度,并保留输入图像中局部边角区域的详细信息,有助于有效提取出血区域特征。其次,在编码器阶段引入了注意力混洗机制(Shuffle Attention,SA),有效地学习了出血区域与背景间的微小差异,从而提高了分割任务的精确度。最后,在解码器阶段采用CBM2结构促进信息更有效传递,增强模型泛化能力和准确性。在脑出血公开数据集Physionet(PHY)上进行了大量实验,结果表明,所提方法超过了其他9种主要的分割方法,在脑出血CT图像分割任务中获得了更优异的性能。
展开更多
关键词
深度学习
CT图像
脑出血分割
注意力混洗机制
显式视觉中心
在线阅读
下载PDF
职称材料
基于双向多层级交互网络的肺部CT图像分类
2
作者
龙肖
黄巍
胡凯
《计算机科学》
北大核心
2025年第S1期85-90,共6页
近年来,基于局部窗口的Self-Attention机制在视觉分类任务中表现突出。然而,由于存在感受野有限和建模能力弱的问题,其在处理复杂数据时效果不佳。肺部CT图像中的特征复杂多样,包括结节的形状、大小、密度等,给深入挖掘数据中的深层次...
近年来,基于局部窗口的Self-Attention机制在视觉分类任务中表现突出。然而,由于存在感受野有限和建模能力弱的问题,其在处理复杂数据时效果不佳。肺部CT图像中的特征复杂多样,包括结节的形状、大小、密度等,给深入挖掘数据中的深层次特征带来挑战。针对这些问题,文中提出了一个全新的双向多层级交互网络模型Bi-directional Multi-level Interaction Vision Transformer(Bi-MI ViT)。该网络通过双向多层级交互机制有效融合空间和通道信息,从而显著提升特征提取的准确性和全面性。在Transformer分支中,引入了高效的级联组注意力机制,旨在丰富注意力头特征的多样性,并增强模型对关键信息的捕捉能力。同时,在卷积神经网络(Convolutional Neural Networks,CNNs)分支中,通过设计DP block,并利用点卷积(Point-Wise Convolution,PW)和深度卷积(Depth-Wise Convolution,DW)深入挖掘局部信息,以优化模型的表达能力。此外,深度特征提取模块(Deep Feature Extraction,DFE)的建立增强了特征传播和复用,提高了数据利用效率,实现了实质性的性能改进。实验结果显示,在公开的COVID19-CT数据集和私有的LUAD-CT数据集上,所提算法优于对比的8种方法,实现了准确分类。
展开更多
关键词
肺部CT图像
双向多层级交互
卷积神经网络
TRANSFORMER
分类
在线阅读
下载PDF
职称材料
题名
基于ESC-TransUNet网络的脑出血CT图像分割
1
作者
谭佳慧
文琛言
黄巍
胡凯
机构
湘潭大学
计算机
学院网络空间安全学院
长沙市第一医院放射科计算机医学图像处理研究中心
出处
《计算机科学》
北大核心
2025年第S1期99-107,共9页
基金
国家自然科学基金(62272404)
湖南省普通高等学校教学改革研究项目(202401000574)
+2 种基金
湖南省科技厅项目(2021SK53105)
湖南省教育厅项目(23A0146)
湖南省大学生创新创业训练计划项目(S202310530024)。
文摘
针对脑出血CT图像处理中遇到的出血区域空间位置、形状、尺寸多变性以及与周围组织强度值相近导致边界难以确定等挑战,提出了一种改进TransUNet的图像分割模型(ESC-TransUNet)。该模型首先在上采样前增添了显式视觉中心(Explicit Visual Center,EVC),能够捕获图像中远距离像素的关联程度,并保留输入图像中局部边角区域的详细信息,有助于有效提取出血区域特征。其次,在编码器阶段引入了注意力混洗机制(Shuffle Attention,SA),有效地学习了出血区域与背景间的微小差异,从而提高了分割任务的精确度。最后,在解码器阶段采用CBM2结构促进信息更有效传递,增强模型泛化能力和准确性。在脑出血公开数据集Physionet(PHY)上进行了大量实验,结果表明,所提方法超过了其他9种主要的分割方法,在脑出血CT图像分割任务中获得了更优异的性能。
关键词
深度学习
CT图像
脑出血分割
注意力混洗机制
显式视觉中心
Keywords
Deep learning
CT images
Intracranial hemorrhage segmentation
Shuffle attention mechanism
Explicit visual center
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于双向多层级交互网络的肺部CT图像分类
2
作者
龙肖
黄巍
胡凯
机构
湘潭大学
计算机
学院·网络空间安全学院
湖南省
长沙市第一医院放射科计算机医学图像处理研究中心
出处
《计算机科学》
北大核心
2025年第S1期85-90,共6页
基金
国家自然科学基金(62272404)
湖南省自然科学基金(2022JJ30571)
+3 种基金
湖南省科技厅项目(2021SK53105)
湖南省教育厅项目(23A0146)
湖南省大学生创新创业训练计划项目(S202310530178)
湖南省普通本科高校教学改革研究项目(202401000574)。
文摘
近年来,基于局部窗口的Self-Attention机制在视觉分类任务中表现突出。然而,由于存在感受野有限和建模能力弱的问题,其在处理复杂数据时效果不佳。肺部CT图像中的特征复杂多样,包括结节的形状、大小、密度等,给深入挖掘数据中的深层次特征带来挑战。针对这些问题,文中提出了一个全新的双向多层级交互网络模型Bi-directional Multi-level Interaction Vision Transformer(Bi-MI ViT)。该网络通过双向多层级交互机制有效融合空间和通道信息,从而显著提升特征提取的准确性和全面性。在Transformer分支中,引入了高效的级联组注意力机制,旨在丰富注意力头特征的多样性,并增强模型对关键信息的捕捉能力。同时,在卷积神经网络(Convolutional Neural Networks,CNNs)分支中,通过设计DP block,并利用点卷积(Point-Wise Convolution,PW)和深度卷积(Depth-Wise Convolution,DW)深入挖掘局部信息,以优化模型的表达能力。此外,深度特征提取模块(Deep Feature Extraction,DFE)的建立增强了特征传播和复用,提高了数据利用效率,实现了实质性的性能改进。实验结果显示,在公开的COVID19-CT数据集和私有的LUAD-CT数据集上,所提算法优于对比的8种方法,实现了准确分类。
关键词
肺部CT图像
双向多层级交互
卷积神经网络
TRANSFORMER
分类
Keywords
Lung CT images
Bi-directional multi-layer interaction
Convolutional neural network
Transformer
Classification
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于ESC-TransUNet网络的脑出血CT图像分割
谭佳慧
文琛言
黄巍
胡凯
《计算机科学》
北大核心
2025
0
在线阅读
下载PDF
职称材料
2
基于双向多层级交互网络的肺部CT图像分类
龙肖
黄巍
胡凯
《计算机科学》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部