期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于IRLS算法的机器人动力学参数辨识 被引量:7
1
作者 冯利民 俞经虎 +1 位作者 王延玉 刘佳怡 《现代制造工程》 CSCD 北大核心 2022年第4期37-44,共8页
为提高机器人动力学参数辨识的准确性,提出了一种基于迭代加权最小二乘(Iterative Reweighted Least Squares,IRLS)算法的辨识方法。首先推导了机器人的线性动力学模型,随后提出了一种改进摩擦模型,并设计了改进傅里叶级数作为激励轨迹... 为提高机器人动力学参数辨识的准确性,提出了一种基于迭代加权最小二乘(Iterative Reweighted Least Squares,IRLS)算法的辨识方法。首先推导了机器人的线性动力学模型,随后提出了一种改进摩擦模型,并设计了改进傅里叶级数作为激励轨迹采集数据。为提升动力学参数辨识的准确性,在加权最小二乘法基础上进行改进,提出了IRLS算法对动力学参数进行辨识。最后以六自由度机器人为试验对象,进行了参数辨识试验。结果表明,基于IRLS算法的辨识方法与加权最小二乘法相比,前3个关节力矩误差的均方根(Root Mean Square,RMS)值降低了13.28%,后3个关节力矩误差的RMS值降低了28.57%,6个关节力矩误差的RMS值平均降低了17.15%,证明了基于IRLS算法的辨识方法的有效性。 展开更多
关键词 机器人 动力学模型 改进摩擦模型 参数辨识 迭代加权最小二乘算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部