期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
样点稀少条件下基于环境相似性的土壤有机碳空间分布预测
1
作者
郭澎涛
肖秀绒
+3 位作者
赵菊
李茂芬
李波
傅奠基
《农业工程学报》
EI
CAS
CSCD
北大核心
2024年第15期103-110,共8页
针对现有土壤有机碳(soil organic carbon,SOC)空间分布预测模型难以适用于样点稀少条件下的问题,该研究依据成土环境越相似土壤属性越相似的假设,提出一种基于环境相似性的SOC空间分布预测方法(environmental similarity model,ESM),...
针对现有土壤有机碳(soil organic carbon,SOC)空间分布预测模型难以适用于样点稀少条件下的问题,该研究依据成土环境越相似土壤属性越相似的假设,提出一种基于环境相似性的SOC空间分布预测方法(environmental similarity model,ESM),首先利用影响SOC空间分布的关键环境变量刻画研究区成土环境,然后比较采样点与待估测点处的环境相似度,最后依据环境相似度预测待估测点处的SOC含量。为验证ESM方法的有效性,以云南省作为案例研究区,并设置3个情景:1)从64个采样点中随机抽取10个点作为训练集,余下的采样点作为验证集,随机抽取20次;2)从64个采样点中随机抽取20个点作为训练集,余下的采样点作为验证集,随机抽取20次;3)从64个采样点中随机抽取30个点作为训练集,余下的采样点作为验证集,随机抽取20次。以平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)评估模型预测精度。方差分析结果表明,采样点分别为10、20和30这3个情景条件下ESM的MAE(12.7、11.7、11.1 g/kg)都显著(P<0.05)低于多重线性回归(72.6、23.0、16.7 g/kg)和人工神经网络(15.8、14.9、15.8 g/kg),表明ESM模型具有较高的预测精度及较强的鲁棒性,可为成土因素复杂区域SOC空间分布的预测提供借鉴和指导。
展开更多
关键词
土壤
有机碳
模型
环境相似性
空间分布
预测
样点少
在线阅读
下载PDF
职称材料
题名
样点稀少条件下基于环境相似性的土壤有机碳空间分布预测
1
作者
郭澎涛
肖秀绒
赵菊
李茂芬
李波
傅奠基
机构
昭通学院地理科学与旅游学院
金沙江文化研究中心
北京师范大学地理科学学部
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2024年第15期103-110,共8页
基金
国家自然科学基金项目(42071228)。
文摘
针对现有土壤有机碳(soil organic carbon,SOC)空间分布预测模型难以适用于样点稀少条件下的问题,该研究依据成土环境越相似土壤属性越相似的假设,提出一种基于环境相似性的SOC空间分布预测方法(environmental similarity model,ESM),首先利用影响SOC空间分布的关键环境变量刻画研究区成土环境,然后比较采样点与待估测点处的环境相似度,最后依据环境相似度预测待估测点处的SOC含量。为验证ESM方法的有效性,以云南省作为案例研究区,并设置3个情景:1)从64个采样点中随机抽取10个点作为训练集,余下的采样点作为验证集,随机抽取20次;2)从64个采样点中随机抽取20个点作为训练集,余下的采样点作为验证集,随机抽取20次;3)从64个采样点中随机抽取30个点作为训练集,余下的采样点作为验证集,随机抽取20次。以平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)评估模型预测精度。方差分析结果表明,采样点分别为10、20和30这3个情景条件下ESM的MAE(12.7、11.7、11.1 g/kg)都显著(P<0.05)低于多重线性回归(72.6、23.0、16.7 g/kg)和人工神经网络(15.8、14.9、15.8 g/kg),表明ESM模型具有较高的预测精度及较强的鲁棒性,可为成土因素复杂区域SOC空间分布的预测提供借鉴和指导。
关键词
土壤
有机碳
模型
环境相似性
空间分布
预测
样点少
Keywords
soils
organic carbon
models
environmental similarity
spatial distribution
prediction
limited samples
分类号
S159.9 [农业科学—土壤学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
样点稀少条件下基于环境相似性的土壤有机碳空间分布预测
郭澎涛
肖秀绒
赵菊
李茂芬
李波
傅奠基
《农业工程学报》
EI
CAS
CSCD
北大核心
2024
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部