成功制备出室温激射波长为2μm的Ga Sb基侧向耦合分布反馈量子阱激光器.采用全息曝光及电感耦合等离子体刻蚀技术制备二阶布拉格光栅.优化了光栅制备的刻蚀条件,并获得室温2μm单纵模激射.激光器输出光功率超过5 m W,最大边模抑制比达到...成功制备出室温激射波长为2μm的Ga Sb基侧向耦合分布反馈量子阱激光器.采用全息曝光及电感耦合等离子体刻蚀技术制备二阶布拉格光栅.优化了光栅制备的刻蚀条件,并获得室温2μm单纵模激射.激光器输出光功率超过5 m W,最大边模抑制比达到24 d B.展开更多
Au-Cu双金属合金纳米颗粒对包括CO氧化和CO2还原等在内的多个反应有较好的催化活性,然而关于其表面性质的研究却相当匮乏。在此工作中,我们通过对低覆盖度的Au/Cu(111)和Cu/Au(111)双金属薄膜退火,制备出了单原子级分散的Au/Cu(111)和Cu...Au-Cu双金属合金纳米颗粒对包括CO氧化和CO2还原等在内的多个反应有较好的催化活性,然而关于其表面性质的研究却相当匮乏。在此工作中,我们通过对低覆盖度的Au/Cu(111)和Cu/Au(111)双金属薄膜退火,制备出了单原子级分散的Au/Cu(111)和Cu/Au(111)合金化表面,并利用高分辨扫描隧道显微镜(STM)和扫描隧道谱(STS)进一步研究了掺杂原子的电子性质及其对CO吸附行为的影响。研究发现,分散在Cu(111)表面的表层和次表层Au单原子在STM上表现出不同衬度。在-0.5 e V附近,前者表现出相较于Cu(111)明显增强的电子态密度,而后者则明显减弱。吸附实验表明表层Au单原子对CO的吸附能力并没有得到增强,甚至会减弱其周围Cu原子的吸附能力。与Au在Cu(111)表面较好的分散相反,Cu原子倾向于钻入Au(111)的次表层,并且形成多原子聚集体。且Cu原子受Au(111)衬底吸电子作用的影响,其对CO的吸附能力明显减弱。这个研究结果揭示了合金表面的微观结构与性质的关联,为进一步阐明Au-Cu双金属催化剂的表面反应机理提供参考。展开更多
基金supported by the National Fundamental Research Program of China (Grant No. 2 011CBA00200)the National Natural Science Foundation of China (Grant Nos. 11174271, 61275115, 61435011, 61525504)
基金Supported by the National Basic Research Program of China(2014CB643903,2013CB932904)the National Natural Science Foundation of China(61435012,61306088,61274013)
基金Supported by National Natural Science Foundation of China(11474248,61176127,61006085,61274013,61306013)Key Program for International S&T cooperation Projects of China(2011DFA62380)Ph.D.Programs Foundation of Ministry of Education of China(20105303120002)
基金Supported by National Natural Science Foundation of China(11374211)the Innovation Program of Shanghai Municipal Education Commission(14ZZ020)+1 种基金Shanghai Science and Technology Development Funds(No.15QA1402200)the open fund from HPCL(No.201511-01)
文摘Au-Cu双金属合金纳米颗粒对包括CO氧化和CO2还原等在内的多个反应有较好的催化活性,然而关于其表面性质的研究却相当匮乏。在此工作中,我们通过对低覆盖度的Au/Cu(111)和Cu/Au(111)双金属薄膜退火,制备出了单原子级分散的Au/Cu(111)和Cu/Au(111)合金化表面,并利用高分辨扫描隧道显微镜(STM)和扫描隧道谱(STS)进一步研究了掺杂原子的电子性质及其对CO吸附行为的影响。研究发现,分散在Cu(111)表面的表层和次表层Au单原子在STM上表现出不同衬度。在-0.5 e V附近,前者表现出相较于Cu(111)明显增强的电子态密度,而后者则明显减弱。吸附实验表明表层Au单原子对CO的吸附能力并没有得到增强,甚至会减弱其周围Cu原子的吸附能力。与Au在Cu(111)表面较好的分散相反,Cu原子倾向于钻入Au(111)的次表层,并且形成多原子聚集体。且Cu原子受Au(111)衬底吸电子作用的影响,其对CO的吸附能力明显减弱。这个研究结果揭示了合金表面的微观结构与性质的关联,为进一步阐明Au-Cu双金属催化剂的表面反应机理提供参考。
基金Supported by the National Natural Science Foundation of China(61774130,11474248,61790581,51973070)the Ph.D.Pro⁃grams Foundation of Ministry of Education of China(20105303120002)National Key Technology Research and Development Program of the Ministry of Sci⁃ence and Technology of China(2018YFA0209101).