期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于Z-Score动态压缩的高效联邦学习算法 被引量:2
1
作者 刘乔寿 皮胜文 原炜锡 《计算机应用研究》 CSCD 北大核心 2024年第7期2093-2097,共5页
联邦学习作为一种具有隐私保护的新兴分布式计算范式,在一定程度上保护了用户隐私和数据安全。然而,由于联邦学习系统中客户端与服务器需要频繁地交换模型参数,造成了较大的通信开销。在带宽有限的无线通信场景中,这成为了限制联邦学习... 联邦学习作为一种具有隐私保护的新兴分布式计算范式,在一定程度上保护了用户隐私和数据安全。然而,由于联邦学习系统中客户端与服务器需要频繁地交换模型参数,造成了较大的通信开销。在带宽有限的无线通信场景中,这成为了限制联邦学习发展的主要瓶颈。针对这一问题,提出了一种基于Z-Score的动态稀疏压缩算法。通过引入Z-Score,对局部模型更新进行离群点检测,将重要的更新值视为离群点,从而将其挑选出来。在不需要复杂的排序算法以及原始模型更新的先验知识的情况下,实现模型更新的稀疏化。同时随着通信轮次的增加,根据全局模型的损失值动态地调整稀疏率,从而在保证模型精度的前提下最大程度地减少总通信量。通过实验证明,在I.I.D.数据场景下,该算法与联邦平均(FedAvg)算法相比可以降低95%的通信量,精度损失仅仅为1.6%,与FTTQ算法相比可以降低40%~50%的通信量,精度损失仅为1.29%,证明了该方法在保证模型性能的同时显著降低了通信成本。 展开更多
关键词 联邦学习 Z-SCORE 稀疏化 动态稀疏率
在线阅读 下载PDF
空中智能反射面增强的URLLC多无人机网络
2
作者 崔亚平 应兆朋 +4 位作者 何鹏 郑玉峰 吴大鹏 王汝言 陈烙 《西南交通大学学报》 EI CSCD 北大核心 2024年第4期907-916,共10页
在多无人机超可靠低时延通信(ultra-reliable low-latency communications,URLLC)网络中,为满足超可靠低时延要求,引入空中智能反射面(intelligent reflecting surface,IRS)辅助通信,提出一种多智能体深度确定性策略梯度(multi-agent de... 在多无人机超可靠低时延通信(ultra-reliable low-latency communications,URLLC)网络中,为满足超可靠低时延要求,引入空中智能反射面(intelligent reflecting surface,IRS)辅助通信,提出一种多智能体深度确定性策略梯度(multi-agent deep deterministic policy gradient,MADDPG)方法.首先,建立URLLC多无人机系统模型,其中,多架主无人机作为空中基站为多个地面用户提供服务,一架辅无人机携带IRS作为空中无源中继,辅助主无人机与地面用户通信;然后,考虑多种信道条件和能耗,分别建立复合信道模型和总能耗模型;接着,对问题进行分析,在满足有限块长、无人机能量以及IRS相移的约束下,通过联合优化通信调度、IRS相移以及块长,达到总解码错误率最小化的目标;最后,考虑集中式训练在URLLC场景下的时延敏感限制以及分布式训练在无人机资源限制下的能量限制,设计集中式训练、分布式执行的MADDPG框架.研究结果表明:总解码错误率随着IRS反射单元的增加而急剧下降;同时,总解码错误率随着块长和发射功率的增大而减小,具体来说,块长每增加20个符号,总解码错误率减小91.1%. 展开更多
关键词 多无人机 智能反射面 可靠性 多智能体
在线阅读 下载PDF
基于超像素的高分遥感影像分割算法 被引量:3
3
作者 向泽君 蔡怤晟 +1 位作者 楚恒 黄磊 《计算机工程与设计》 北大核心 2020年第5期1379-1384,共6页
针对高分遥感影像中存在地物数目多,特征信息复杂导致分割边缘不清晰、对象细节丢失等问题,提出一种改进的超像素分割和多特征结合的遥感影像分割合并算法。在对图像进行分割前的预处理阶段,使用超像素分割技术得到初始分割图像;区域合... 针对高分遥感影像中存在地物数目多,特征信息复杂导致分割边缘不清晰、对象细节丢失等问题,提出一种改进的超像素分割和多特征结合的遥感影像分割合并算法。在对图像进行分割前的预处理阶段,使用超像素分割技术得到初始分割图像;区域合并过程中,基于对象间的异质性和对象内部的同质性,结合光谱、纹理和形状特征,对对象进行合并;通过调整全局分割参数来调整合并尺度,得到最终的影像分割结果。实验结果表明,所提方法能得到较好的影像分割效果。 展开更多
关键词 多特征 超像素 异质性 合并策略 影像分割
在线阅读 下载PDF
结合特征选择的CVA多尺度遥感影像变化检测 被引量:10
4
作者 蔡怤晟 向泽君 +1 位作者 蔡衡 单德明 《测绘通报》 CSCD 北大核心 2020年第8期101-104,130,共5页
针对在多时相变化检测中,面向对象方法无法较好地检测影像中的细微变化,受分割效果以及面向像素方法的影响出现较高虚警率等问题,本文提出了一种结合基于像素的多特征变化向量分析法(CVA)与基于对象的多层次分割的联合判别方法。首先提... 针对在多时相变化检测中,面向对象方法无法较好地检测影像中的细微变化,受分割效果以及面向像素方法的影响出现较高虚警率等问题,本文提出了一种结合基于像素的多特征变化向量分析法(CVA)与基于对象的多层次分割的联合判别方法。首先提取不同时相的光谱与纹理特征,利用最大相关最小冗余(mRMR)算法进行特征选择并通过CVA得到像素级变化检测结果;然后对两幅影像进行叠合分割,利用区域合并策略进行不同尺度检测并获取各尺度检测结果;最后结合多种检测结果进行融合,获得最终变化检测结果。检测结果表明本文所提方法能有效降低漏检率,同时提高了检测的准确性。 展开更多
关键词 特征融合 特征选择 多尺度分割 变化向量法 决策级融合
在线阅读 下载PDF
基于混合深度神经网络的就业推荐方法 被引量:8
5
作者 张婳 彭海英 《计算机工程与设计》 北大核心 2022年第4期995-1001,共7页
针对就业推荐中交互数据极其稀疏的问题,提出一个基于多头自注意力机制和特征交叉网络的混合深度神经网络模型。对学生行为序列属性进行定义,将学生基本属性、学生行为序列属性、职业基本属性、职业描述属性的独立嵌入作为模型输入;使... 针对就业推荐中交互数据极其稀疏的问题,提出一个基于多头自注意力机制和特征交叉网络的混合深度神经网络模型。对学生行为序列属性进行定义,将学生基本属性、学生行为序列属性、职业基本属性、职业描述属性的独立嵌入作为模型输入;使用多头自注意力机制挖掘学生行为序列属性与职业描述属性中的序列特征;分别使用特征交叉网络和深度神经网络实现特征交互和数据的深度拟合。基于真实数据集的实验结果表明,与目前已有方法相比,该模型在HR@50与MRR@50指标上达到了最优性能,验证了模型的有效性。 展开更多
关键词 推荐算法 就业推荐 深度神经网络 多头自注意力机制 行为序列 特征融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部