期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
F-TCKT:融合遗忘因素的深度时序卷积知识追踪模型 被引量:5
1
作者 张鹏 文磊 《计算机应用研究》 CSCD 北大核心 2023年第4期1070-1074,共5页
智慧教育中,对学生的知识水平进行追踪是很重要的技术之一。传统的深度知识追踪方法的主要关注点集中在循环神经网络(recurrent neural network, RNN)上,但RNN存在梯度消失或者梯度爆炸的问题,并且很多知识追踪方法没有考虑到学习过程... 智慧教育中,对学生的知识水平进行追踪是很重要的技术之一。传统的深度知识追踪方法的主要关注点集中在循环神经网络(recurrent neural network, RNN)上,但RNN存在梯度消失或者梯度爆炸的问题,并且很多知识追踪方法没有考虑到学习过程中遗忘行为对结果的影响。针对以上问题,为了准确地预测学生的知识水平,提出了一种融合遗忘因素的深度时序卷积知识追踪模型(temporal convolutional knowledge tracking with forgetting, F-TCKT)。该模型引入了三个影响学生遗忘行为的因素,包括学习相同知识点的时间间隔、学习的时间间隔和同一知识点的学习次数。首先利用全连接网络计算得到表示学生遗忘程度的向量并与学生的答题记录进行拼接,然后使用梯度稳定的时间卷积网络(temporal convolutional network, TCN)和注意力机制预测学生下一次答题正误的概率。经实验验证,与传统方法相比,F-TCKT具有更好的预测性能。 展开更多
关键词 智慧教育 知识追踪 时间卷积网络 遗忘行为
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部