期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
混合最小二乘回归的稀疏子空间聚类算法
被引量:
2
1
作者
王越
严亮
张强
《计算机应用与软件》
2017年第10期236-240,共5页
稀疏子空间聚类的关键在于在求得真实反映数据集的相似度矩阵,然后将相似度矩阵代入谱聚类求解。相似度矩阵既要刻画数据集的子空间特性,同时也要反映出同一类数据点之间的两两相关程度,稀疏子空间聚类(SSC)专注于每一个数据表示系数的...
稀疏子空间聚类的关键在于在求得真实反映数据集的相似度矩阵,然后将相似度矩阵代入谱聚类求解。相似度矩阵既要刻画数据集的子空间特性,同时也要反映出同一类数据点之间的两两相关程度,稀疏子空间聚类(SSC)专注于每一个数据表示系数的最大稀疏性,缺乏对数据集全局结构的描述;最小二乘回归(LSR)保证了同一类数据的结构相关性,但是不够稀疏。将最小二乘回归引入稀疏子空间聚类算法中,从而保证数据的相似度矩阵兼具稀疏性和分组效应。在运动分割和人脸聚类的实验中,将该算法和SSC、LSR算法对比,可以发现该算法在准确率上的优势。
展开更多
关键词
稀疏子空间聚类
最小二乘回归
谱聚类
运动分割
人脸聚类
在线阅读
下载PDF
职称材料
题名
混合最小二乘回归的稀疏子空间聚类算法
被引量:
2
1
作者
王越
严亮
张强
机构
重庆理工大学计算机科学与工程系
出处
《计算机应用与软件》
2017年第10期236-240,共5页
文摘
稀疏子空间聚类的关键在于在求得真实反映数据集的相似度矩阵,然后将相似度矩阵代入谱聚类求解。相似度矩阵既要刻画数据集的子空间特性,同时也要反映出同一类数据点之间的两两相关程度,稀疏子空间聚类(SSC)专注于每一个数据表示系数的最大稀疏性,缺乏对数据集全局结构的描述;最小二乘回归(LSR)保证了同一类数据的结构相关性,但是不够稀疏。将最小二乘回归引入稀疏子空间聚类算法中,从而保证数据的相似度矩阵兼具稀疏性和分组效应。在运动分割和人脸聚类的实验中,将该算法和SSC、LSR算法对比,可以发现该算法在准确率上的优势。
关键词
稀疏子空间聚类
最小二乘回归
谱聚类
运动分割
人脸聚类
Keywords
Sparse subspace clusterng Least-squares regression Spectral clusterng Motion segmentation Face clusterng
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
混合最小二乘回归的稀疏子空间聚类算法
王越
严亮
张强
《计算机应用与软件》
2017
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部