为解决YOLOv8n算法在机场异物检测中存在计算复杂度高、计算资源消耗大的问题,通过在YOLOv8n算法中引入轻量化模块的方法研究了机场异物检测的问题,提出了Fast-BiYOLOv8n算法。首先,设计了C2f_FasterEMA模块并引入YOLOv8n算法的骨干网络...为解决YOLOv8n算法在机场异物检测中存在计算复杂度高、计算资源消耗大的问题,通过在YOLOv8n算法中引入轻量化模块的方法研究了机场异物检测的问题,提出了Fast-BiYOLOv8n算法。首先,设计了C2f_FasterEMA模块并引入YOLOv8n算法的骨干网络中,该模块融合了FasterBlock模块和高效多尺度注意力(efficient multi-scale attention,EMA)注意力机制,增强了图像的特征提取能力,同时降低了算法计算量;其次,在路径聚合网络(path aggregation network,PANet,)网络架构中融合了骨干网络中的P2特征层并设计了双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)网络架构,增加了跨尺度连接促进了不同特征图之间的信息融合,同时加入C2f_Faster模块提高了特征融合的效率并进一步降低了算法的计算量;最后,通过改进损失函数为Inner-CIoU(intersection over union,complete intersection over union loss)加快了算法的收敛速度,提高了检测准确率。结果表明,Fast-BiYOLOv8n算法的检测准确率达到99.0%,召回率为98.8%,平均精度均值(mean average precision,mAP)提升了3.5个百分点,达到99.3%,参数量比原模型降低了27%,模型的权重大小降低了21%,实现了在降低算法参数量的同时,提升检测准确率的目的。展开更多
文摘为解决YOLOv8n算法在机场异物检测中存在计算复杂度高、计算资源消耗大的问题,通过在YOLOv8n算法中引入轻量化模块的方法研究了机场异物检测的问题,提出了Fast-BiYOLOv8n算法。首先,设计了C2f_FasterEMA模块并引入YOLOv8n算法的骨干网络中,该模块融合了FasterBlock模块和高效多尺度注意力(efficient multi-scale attention,EMA)注意力机制,增强了图像的特征提取能力,同时降低了算法计算量;其次,在路径聚合网络(path aggregation network,PANet,)网络架构中融合了骨干网络中的P2特征层并设计了双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)网络架构,增加了跨尺度连接促进了不同特征图之间的信息融合,同时加入C2f_Faster模块提高了特征融合的效率并进一步降低了算法的计算量;最后,通过改进损失函数为Inner-CIoU(intersection over union,complete intersection over union loss)加快了算法的收敛速度,提高了检测准确率。结果表明,Fast-BiYOLOv8n算法的检测准确率达到99.0%,召回率为98.8%,平均精度均值(mean average precision,mAP)提升了3.5个百分点,达到99.3%,参数量比原模型降低了27%,模型的权重大小降低了21%,实现了在降低算法参数量的同时,提升检测准确率的目的。