期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于数据模糊性的PU学习研究
1
作者 李婷婷 吕佳 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第1期45-51,共7页
PU学习是指从正例样本和无标记样本中训练分类器的一种学习方法.针对传统PU学习中所含初始正例过少,难以有效地从无标记样本中选出可靠负例,且分类过程易受噪声点影响等问题.本文提出了一种基于数据模糊性来提取无标记样本中有效信息的P... PU学习是指从正例样本和无标记样本中训练分类器的一种学习方法.针对传统PU学习中所含初始正例过少,难以有效地从无标记样本中选出可靠负例,且分类过程易受噪声点影响等问题.本文提出了一种基于数据模糊性来提取无标记样本中有效信息的PU学习方法:先对正例无标记样本集进行半监督聚类,选出靠近正例样本的低模糊度数据来扩充初始正例集,并选择远离正例样本的低模糊度数据作为可靠负例;再剪辑掉无标记样本中高模糊度数据;最后在扩充后的正例样本集和可靠负例集上训练分类器,对初始无标记样本集进行分类.在标准数据集上的对比实验证实了提出算法的有效性. 展开更多
关键词 PU学习 模糊性 可靠负例 噪声点 分类边界
在线阅读 下载PDF
基于改进主动学习和自训练的联合算法 被引量:1
2
作者 吕佳 傅屈寒 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第1期25-32,共8页
针对主动学习面向大型数据集人工标记成本过高和半监督自训练算法中存在误标记点影响的问题,提出了一种主动学习与半监督自训练交替迭代训练的联合算法.算法在训练过程中奇数轮次采用主动学习算法,偶数轮次采用自训练算法,通过2种算法... 针对主动学习面向大型数据集人工标记成本过高和半监督自训练算法中存在误标记点影响的问题,提出了一种主动学习与半监督自训练交替迭代训练的联合算法.算法在训练过程中奇数轮次采用主动学习算法,偶数轮次采用自训练算法,通过2种算法的交替迭代训练以弥补彼此不足.自训练算法对无标记样本的预测减轻了主动学习标记样本的负担,同时主动学习标记易变成噪声的样本,减轻了自训练算法训练过程中对样本的标记错误.提出了一种基于密度峰值聚类和隶属度的改进主动学习算法:将初始无标记样本聚类成簇,根据隶属度差值在每个簇内选取部分样本做人工标记,获得可表达样本的整体结构的均衡样本.仿真试验表明:提出的联合算法在性能上要优于2种单一算法.对比常见的主动学习算法,改进后的主动学习算法分类性能得到显著提升,将其应用于联合算法中的效果更具优势. 展开更多
关键词 主动学习 自训练算法 密度峰值聚类 联合算法 隶属度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部