期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Faster R-CNN算法的船舶识别检测 被引量:9
1
作者 崔巍 杨亮亮 +3 位作者 夏荣 牟向伟 樊晓伟 杨海峰 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2020年第2期182-187,223,共7页
目前,检测卫星图像中船舶的常用方法如合成孔径雷达(synthetic-aperture radar,SAR)对多目标仍难以达到精确检测,而更快速的区域卷积神经网络(faster region-based convolutional neural network,Faster R-CNN)算法是一种深度学习算法,... 目前,检测卫星图像中船舶的常用方法如合成孔径雷达(synthetic-aperture radar,SAR)对多目标仍难以达到精确检测,而更快速的区域卷积神经网络(faster region-based convolutional neural network,Faster R-CNN)算法是一种深度学习算法,用于物体检测和分类时,可以实现高精度实时监测。文章应用Faster R-CNN算法对卫星图像中的船舶进行识别和检测,并与传统尺度不变特征转换(scale-invariant feature transform,SIFT)算法、快速区域卷积神经网络(fast region-based convolutional neural network,Fast R-CNN)算法进行对比。研究结果表明,Faster R-CNN算法比传统SIFT算法和Fast R-CNN算法有更好的收敛速度和识别精度,该算法在船舶识别方面具有较大潜力。 展开更多
关键词 卫星图像 船舶检测 更快速的区域卷积神经网络(Faster R-CNN) 尺度不变特征转换(SIFT) 快速区域卷积神经网络(Fast R-CNN)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部