期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于栈式自编码器模型的汇率时间序列预测
被引量:
10
1
作者
寇茜茜
何希平
《计算机应用与软件》
2017年第3期218-221,247,共5页
针对目前具有非线性特征的金融时间序列浅层模型预测精度有限的问题,提出一种由底层的栈式自编码器和顶层的回归神经元组成的栈式自编码神经网络预测模型。首先利用自编码器的无监督学习机制对时间序列进行特征识别与学习,逐层贪婪学习...
针对目前具有非线性特征的金融时间序列浅层模型预测精度有限的问题,提出一种由底层的栈式自编码器和顶层的回归神经元组成的栈式自编码神经网络预测模型。首先利用自编码器的无监督学习机制对时间序列进行特征识别与学习,逐层贪婪学习神经网络各层,之后将栈式自编码器扩展为有监督机制的SAEP模型,将SAE学习到的参数用于初始化神经网络,最后利用有监督学习对权值进行微调。实验设计利用汇率时间序列作为训练及测试样本,与目前较成熟的方法进行对比实验,验证了所提出的模型在汇率时序预测应用中的有效性。
展开更多
关键词
时间序列
预测
深度学习
栈式自编码器
特征学习
深度神经网络
在线阅读
下载PDF
职称材料
题名
基于栈式自编码器模型的汇率时间序列预测
被引量:
10
1
作者
寇茜茜
何希平
机构
重庆
工商大学
电子商务与供应链系统
重庆市
重点实验室
重庆市工商大学计算机科学与信息工程学院
重庆
工商大学
重庆市
检测控制集成系统
工程
实验室
出处
《计算机应用与软件》
2017年第3期218-221,247,共5页
基金
重庆市教委科技基金项目(KJ1400612)
重庆工商大学研究生院"创新型科研项目"(yjscxx2015-41-21)
文摘
针对目前具有非线性特征的金融时间序列浅层模型预测精度有限的问题,提出一种由底层的栈式自编码器和顶层的回归神经元组成的栈式自编码神经网络预测模型。首先利用自编码器的无监督学习机制对时间序列进行特征识别与学习,逐层贪婪学习神经网络各层,之后将栈式自编码器扩展为有监督机制的SAEP模型,将SAE学习到的参数用于初始化神经网络,最后利用有监督学习对权值进行微调。实验设计利用汇率时间序列作为训练及测试样本,与目前较成熟的方法进行对比实验,验证了所提出的模型在汇率时序预测应用中的有效性。
关键词
时间序列
预测
深度学习
栈式自编码器
特征学习
深度神经网络
Keywords
Time series Prediction Deep learning Stacked autoencoder Feature learning Deep neural networks
分类号
TP391 [自动化与计算机技术—计算机应用技术]
TP183 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于栈式自编码器模型的汇率时间序列预测
寇茜茜
何希平
《计算机应用与软件》
2017
10
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部