期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于非相关多线性主成分分析的人脸识别算法 被引量:5
1
作者 杨凌云 秦岸 《无线电通信技术》 2016年第1期73-75,98,共4页
针对在人脸识别算法中,维数的增加往往会给算法的运算带来沉重负担的问题,提出了一种新的基于非相关多线性主成分分析(UMPCA)和线性判别分析(LDA)的人脸识别算法,算法在保证在降维的时候保留尽可能多的内部结构信息。UMPCA通过一张量至... 针对在人脸识别算法中,维数的增加往往会给算法的运算带来沉重负担的问题,提出了一种新的基于非相关多线性主成分分析(UMPCA)和线性判别分析(LDA)的人脸识别算法,算法在保证在降维的时候保留尽可能多的内部结构信息。UMPCA通过一张量至向量的过程,可直接获取原张量数据的绝大部分非相关特征,提取的特征再通过经典算法LDA处理。利用AT&T人脸数据库对该算法进行了实验,实验数据分析显示该算法优于其他同类算法。 展开更多
关键词 张量 非相关多线性主成分分析(UMPCA) 线性判别分析(LDA) 特征提取
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部