目的探讨可崩解支架联合薄膜套粪便隔绝术在预防低位直肠癌术后吻合口漏的应用。方法回顾性分析2016年1月至2023年4月在重庆医科大学附属永川医院行腹腔镜下低位直肠癌根治术(Dixon术式)的72名患者,其中行预防性造口的35名患者为观察组...目的探讨可崩解支架联合薄膜套粪便隔绝术在预防低位直肠癌术后吻合口漏的应用。方法回顾性分析2016年1月至2023年4月在重庆医科大学附属永川医院行腹腔镜下低位直肠癌根治术(Dixon术式)的72名患者,其中行预防性造口的35名患者为观察组,行可崩解支架联合薄膜套粪便隔绝术的37名患者为研究组。比较2组患者的一般资料、手术时间、住院时间、总体并发症、住院费用、吻合口漏等指标。结果2组患者的一般资料(年龄、性别、BMI、NRS-2002评分、ASA分级、肿瘤分期、肿瘤距肛缘的距离)和合并基础疾病(糖尿病、高血压、其他心血管疾病、慢性阻塞性肺疾病)的比较差异均无统计学意义(P>0.05)。研究组的手术时间(238.0 vs 314.1 min,P<0.001)、术后住院时间(11 vs 12 d,P=0.040)、总体并发症(18.9%vs 51.4%,P=0.004)及住院费用(48327 vs 53092元,P=0.012)显著低于观察组。研究组吻合口漏率略低于观察组,但差异无统计学意义(2.7%vs 8.6%,P=0.350)。结论可崩解支架联合薄膜套粪便隔绝术缩短手术时间和住院时间,降低住院费用和减少总体并发症,且吻合口漏的风险不高于传统手术,可作为预防性造口的替代手术方式。展开更多
构建一种基于氧化石墨烯/聚吡咯-铟锡氧化物GO/PPy-ITO(Graphene Oxide/Polypyrrole-Indium Tin Oxide)微电极的细胞阻抗生物传感器并用于细胞粘附增殖行为学检测。ITO微电极采用光刻技术对感光干膜绝缘层蚀刻而成,通过一步法电聚合技术...构建一种基于氧化石墨烯/聚吡咯-铟锡氧化物GO/PPy-ITO(Graphene Oxide/Polypyrrole-Indium Tin Oxide)微电极的细胞阻抗生物传感器并用于细胞粘附增殖行为学检测。ITO微电极采用光刻技术对感光干膜绝缘层蚀刻而成,通过一步法电聚合技术在ITO微电极表面沉积GO/PPy纳米复合膜制备GO/PPy-ITO微电极;形状测量激光显微镜和扫描电子显微镜分别对GO/PPy表面粗糙度和拓扑形貌进行表征;电化学循环伏安法及阻抗谱表征GO/PPy-ITO微电极的电化学性质;人肺癌细胞株A549粘附、铺展和增殖实验考察GO/PPy界面的生物相容性;以GO/PPy-ITO微电极作为传感电极,利用电化学阻抗谱技术对A549细胞的粘附增殖行为进行检测。结果显示,ITO微电极表面上电沉积的GO/PPy纳米复合物表面平整,分布大量的微孔结构;电化学实验结果显示GO/PPy-ITO微电极比裸ITO微电极具有更低的阻抗特征和更高的电化学活性;GO/PPy比纯PPy膜更能促进A549细胞粘附、铺展和增殖;GO/PPy-ITO微电极表面A549细胞的粘附增殖行为改变电极系统的阻抗谱特征,通过对阻抗谱数据进行等效电路拟合分析获得细胞粘附增殖行为学信息。本文发展的GO/PPy-ITO微电极兼具优良的电化学性质和细胞生物相容性,基于该电极系统构建的细胞阻抗生物传感器可用于细胞病理生理学行为、药物筛选等研究领域。展开更多
加工一种基于感光干膜-铟锡氧化物DFP-ITO(Dry Film Photoresist-Indium Tin Oxide)电极的细胞阻抗生物传感器并实现细胞形态学和阻抗信息同时检测。35μm厚的感光干膜层压在ITO导电玻璃表面上作为绝缘层,通过照相制版技术在感光干膜绝...加工一种基于感光干膜-铟锡氧化物DFP-ITO(Dry Film Photoresist-Indium Tin Oxide)电极的细胞阻抗生物传感器并实现细胞形态学和阻抗信息同时检测。35μm厚的感光干膜层压在ITO导电玻璃表面上作为绝缘层,通过照相制版技术在感光干膜绝缘层上蚀刻不同直径圆孔;以DFP-ITO作为工作电极,通过夹具和测量小池与Ag/Ag Cl参比电极、Pt丝对电极相连构成三电极阻抗测量系统;考察了不同直径DFP-ITO工作电极阻抗谱特征;通过细胞粘附实验及细胞毒性实验考察了感光干膜细胞生物相容性;通过光学显微镜和阻抗谱技术分别对接种在DFP-ITO电极上人肺癌细胞株A549粘附、增殖过程中的形态学和阻抗信息进行检测和分析。研究结果发现不同直径DFP-ITO电极具有相似的阻抗特性;充分固化的感光干膜表面适宜A549细胞粘附且无明显的细胞毒性;基于DFP-ITO电极构建的细胞阻抗传感器能够通过光学显微镜获取A549细胞形态学数据,同时通过阻抗谱技术能够解析A549细胞粘附、增殖过程中的细胞质膜电容、细胞-细胞间隙电阻、细胞-ITO电极间隙电阻变化。本文发展了基于DEP-ITO电极的细胞阻抗传感器结构简单,可实现细胞形态学和阻抗信息的双通道获取,未来可用于细胞生理病理学行为和药物细胞毒性研究。展开更多
文摘目的探讨可崩解支架联合薄膜套粪便隔绝术在预防低位直肠癌术后吻合口漏的应用。方法回顾性分析2016年1月至2023年4月在重庆医科大学附属永川医院行腹腔镜下低位直肠癌根治术(Dixon术式)的72名患者,其中行预防性造口的35名患者为观察组,行可崩解支架联合薄膜套粪便隔绝术的37名患者为研究组。比较2组患者的一般资料、手术时间、住院时间、总体并发症、住院费用、吻合口漏等指标。结果2组患者的一般资料(年龄、性别、BMI、NRS-2002评分、ASA分级、肿瘤分期、肿瘤距肛缘的距离)和合并基础疾病(糖尿病、高血压、其他心血管疾病、慢性阻塞性肺疾病)的比较差异均无统计学意义(P>0.05)。研究组的手术时间(238.0 vs 314.1 min,P<0.001)、术后住院时间(11 vs 12 d,P=0.040)、总体并发症(18.9%vs 51.4%,P=0.004)及住院费用(48327 vs 53092元,P=0.012)显著低于观察组。研究组吻合口漏率略低于观察组,但差异无统计学意义(2.7%vs 8.6%,P=0.350)。结论可崩解支架联合薄膜套粪便隔绝术缩短手术时间和住院时间,降低住院费用和减少总体并发症,且吻合口漏的风险不高于传统手术,可作为预防性造口的替代手术方式。
文摘构建一种基于氧化石墨烯/聚吡咯-铟锡氧化物GO/PPy-ITO(Graphene Oxide/Polypyrrole-Indium Tin Oxide)微电极的细胞阻抗生物传感器并用于细胞粘附增殖行为学检测。ITO微电极采用光刻技术对感光干膜绝缘层蚀刻而成,通过一步法电聚合技术在ITO微电极表面沉积GO/PPy纳米复合膜制备GO/PPy-ITO微电极;形状测量激光显微镜和扫描电子显微镜分别对GO/PPy表面粗糙度和拓扑形貌进行表征;电化学循环伏安法及阻抗谱表征GO/PPy-ITO微电极的电化学性质;人肺癌细胞株A549粘附、铺展和增殖实验考察GO/PPy界面的生物相容性;以GO/PPy-ITO微电极作为传感电极,利用电化学阻抗谱技术对A549细胞的粘附增殖行为进行检测。结果显示,ITO微电极表面上电沉积的GO/PPy纳米复合物表面平整,分布大量的微孔结构;电化学实验结果显示GO/PPy-ITO微电极比裸ITO微电极具有更低的阻抗特征和更高的电化学活性;GO/PPy比纯PPy膜更能促进A549细胞粘附、铺展和增殖;GO/PPy-ITO微电极表面A549细胞的粘附增殖行为改变电极系统的阻抗谱特征,通过对阻抗谱数据进行等效电路拟合分析获得细胞粘附增殖行为学信息。本文发展的GO/PPy-ITO微电极兼具优良的电化学性质和细胞生物相容性,基于该电极系统构建的细胞阻抗生物传感器可用于细胞病理生理学行为、药物筛选等研究领域。
文摘加工一种基于感光干膜-铟锡氧化物DFP-ITO(Dry Film Photoresist-Indium Tin Oxide)电极的细胞阻抗生物传感器并实现细胞形态学和阻抗信息同时检测。35μm厚的感光干膜层压在ITO导电玻璃表面上作为绝缘层,通过照相制版技术在感光干膜绝缘层上蚀刻不同直径圆孔;以DFP-ITO作为工作电极,通过夹具和测量小池与Ag/Ag Cl参比电极、Pt丝对电极相连构成三电极阻抗测量系统;考察了不同直径DFP-ITO工作电极阻抗谱特征;通过细胞粘附实验及细胞毒性实验考察了感光干膜细胞生物相容性;通过光学显微镜和阻抗谱技术分别对接种在DFP-ITO电极上人肺癌细胞株A549粘附、增殖过程中的形态学和阻抗信息进行检测和分析。研究结果发现不同直径DFP-ITO电极具有相似的阻抗特性;充分固化的感光干膜表面适宜A549细胞粘附且无明显的细胞毒性;基于DFP-ITO电极构建的细胞阻抗传感器能够通过光学显微镜获取A549细胞形态学数据,同时通过阻抗谱技术能够解析A549细胞粘附、增殖过程中的细胞质膜电容、细胞-细胞间隙电阻、细胞-ITO电极间隙电阻变化。本文发展了基于DEP-ITO电极的细胞阻抗传感器结构简单,可实现细胞形态学和阻抗信息的双通道获取,未来可用于细胞生理病理学行为和药物细胞毒性研究。
基金supported by National Natural Science Foundation of China (30300449)the Traditional Chinese Medicine Foundation of State Administration (02-03ZP52 )the Fund from Chongqing Medical University (XBYB2007104,XBYB2007108)