期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合EEMD与BiLSTM深度网络的结构监测缺失数据重构
1
作者
何盈盈
黄正洪
+2 位作者
张利凯
赵智航
关腾达
《重庆大学学报》
北大核心
2025年第2期35-49,共15页
在长期监测过程中,由于传感器设备故障、供能中断、网络传输问题等诸多因素,导致结构健康监测系统采集的数据存在不完整性。针对这一问题,结合集合经验模态分解(ensemble empirical mode decomposition,EEMD)与双向长短期记忆网络(bi-di...
在长期监测过程中,由于传感器设备故障、供能中断、网络传输问题等诸多因素,导致结构健康监测系统采集的数据存在不完整性。针对这一问题,结合集合经验模态分解(ensemble empirical mode decomposition,EEMD)与双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)在时序处理方面的优势,提出一种基于EEMD-BiLSTM的结构监测缺失数据重构方法。该方法利用EEMD自适应分解监测时序数据为1组代表不同时间尺度的本征模态分量(intrinsic mode function,IMF),使非线性、非平稳序的时序信号平稳化。然后,将IMF分量输入到BiLSTM网络中进行缺失数据重构,提高BiLSTM预测精度。针对6层框架结构缩尺模型和Benchmark有限元仿真模型进行分析,试验结果表明,相比EEMD-LSTM、BiLSTM、LSTM主流方法,提出的EEMD-BiLSTM具有最高预测精度,在5%、10%、15%缺失数据情况下,其R2指标保持在0.8以上。因此,采用EEMD方法对非稳态结构加速响应数据进行预处理,可有效提高BiLSTM的预测精度,对于结构监测缺失数据问题,提供更具适应性的方法。
展开更多
关键词
结构健康监测
数据重构
集合经验模态分解
双向长短期记忆网络
在线阅读
下载PDF
职称材料
题名
融合EEMD与BiLSTM深度网络的结构监测缺失数据重构
1
作者
何盈盈
黄正洪
张利凯
赵智航
关腾达
机构
重庆
人文
科技
学院
计算机
工程
学院
重庆人文科技学院大数据与网络信息安全工程技术研究中心
重庆
大学土木
工程
学院
出处
《重庆大学学报》
北大核心
2025年第2期35-49,共15页
基金
重庆市教委科学技术研究项目(KJQN202201805,KJQN202301801)
重庆市合川区科技计划项目(HCKJ-2024-110)
重庆人文科技学院科学技术研究项目(CRKZK2023007,JSJGC202201,JSJGC202205)。
文摘
在长期监测过程中,由于传感器设备故障、供能中断、网络传输问题等诸多因素,导致结构健康监测系统采集的数据存在不完整性。针对这一问题,结合集合经验模态分解(ensemble empirical mode decomposition,EEMD)与双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)在时序处理方面的优势,提出一种基于EEMD-BiLSTM的结构监测缺失数据重构方法。该方法利用EEMD自适应分解监测时序数据为1组代表不同时间尺度的本征模态分量(intrinsic mode function,IMF),使非线性、非平稳序的时序信号平稳化。然后,将IMF分量输入到BiLSTM网络中进行缺失数据重构,提高BiLSTM预测精度。针对6层框架结构缩尺模型和Benchmark有限元仿真模型进行分析,试验结果表明,相比EEMD-LSTM、BiLSTM、LSTM主流方法,提出的EEMD-BiLSTM具有最高预测精度,在5%、10%、15%缺失数据情况下,其R2指标保持在0.8以上。因此,采用EEMD方法对非稳态结构加速响应数据进行预处理,可有效提高BiLSTM的预测精度,对于结构监测缺失数据问题,提供更具适应性的方法。
关键词
结构健康监测
数据重构
集合经验模态分解
双向长短期记忆网络
Keywords
structural health monitoring
data reconstruction
ensemble empirical mode decomposition
bidirectional long short-term memory network
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
TU317 [建筑科学—结构工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合EEMD与BiLSTM深度网络的结构监测缺失数据重构
何盈盈
黄正洪
张利凯
赵智航
关腾达
《重庆大学学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部