针对传统特征匹配算法计算效率低、误匹配率高和双目视觉测量精度不足等问题,提出了一种基于自适应几何约束和随机抽样一致性方法的ORB(Oriented FAST and Rotated BRIEF)红外双目测距方法。首先,通过FAST(Features from Accelerated Se...针对传统特征匹配算法计算效率低、误匹配率高和双目视觉测量精度不足等问题,提出了一种基于自适应几何约束和随机抽样一致性方法的ORB(Oriented FAST and Rotated BRIEF)红外双目测距方法。首先,通过FAST(Features from Accelerated Segment Test)算法与BRIEF(Binary Robust Independent Elementary Features)算法检测并描述关键点,采用快速最近邻搜索的算法完成特征点初始匹配。然后,根据初始匹配点对的斜率与距离选择相应的阈值,构建基于斜率与距离的几何约束,剔除明显错误匹配点对。最后利用随机抽样一致性方法去除异常点完成精匹配,结合热像仪标定参数计算出目标物体的距离。实验结果表明,改进的ORB算法与传统算法相比,具有较好的特征点质量和较高的测量精度,测距平均绝对误差为1.64%,具有较好的实用价值。展开更多
针对火灾发生时现有的疏散路径不能根据火情实时更改,可能会将逃生人员引向着火现场从而引起更大危险的问题,提出了一种用于火灾疏散路径动态规划的新型改进蚁群算法(Novel Improved Ant Colony Algorithm,NIACA)。首先通过A^(*)算法提...针对火灾发生时现有的疏散路径不能根据火情实时更改,可能会将逃生人员引向着火现场从而引起更大危险的问题,提出了一种用于火灾疏散路径动态规划的新型改进蚁群算法(Novel Improved Ant Colony Algorithm,NIACA)。首先通过A^(*)算法提高初始信息素浓度,接着提出受火灾因素影响的当量距离改进启发函数,然后改进信息素更新规则来加快蚂蚁最优路径搜索速度,最后对路径进行平滑策略处理。实验结果表明,与原始蚁群算法相比,本文算法降低了算法前期盲目性,动态搜索能力强,能避免算法陷入局部最优,在火灾发生时能够快速准确地规划疏散路径,将逃生人员快速安全疏散到远离火场的安全出口。展开更多
文摘针对传统特征匹配算法计算效率低、误匹配率高和双目视觉测量精度不足等问题,提出了一种基于自适应几何约束和随机抽样一致性方法的ORB(Oriented FAST and Rotated BRIEF)红外双目测距方法。首先,通过FAST(Features from Accelerated Segment Test)算法与BRIEF(Binary Robust Independent Elementary Features)算法检测并描述关键点,采用快速最近邻搜索的算法完成特征点初始匹配。然后,根据初始匹配点对的斜率与距离选择相应的阈值,构建基于斜率与距离的几何约束,剔除明显错误匹配点对。最后利用随机抽样一致性方法去除异常点完成精匹配,结合热像仪标定参数计算出目标物体的距离。实验结果表明,改进的ORB算法与传统算法相比,具有较好的特征点质量和较高的测量精度,测距平均绝对误差为1.64%,具有较好的实用价值。
文摘针对火灾发生时现有的疏散路径不能根据火情实时更改,可能会将逃生人员引向着火现场从而引起更大危险的问题,提出了一种用于火灾疏散路径动态规划的新型改进蚁群算法(Novel Improved Ant Colony Algorithm,NIACA)。首先通过A^(*)算法提高初始信息素浓度,接着提出受火灾因素影响的当量距离改进启发函数,然后改进信息素更新规则来加快蚂蚁最优路径搜索速度,最后对路径进行平滑策略处理。实验结果表明,与原始蚁群算法相比,本文算法降低了算法前期盲目性,动态搜索能力强,能避免算法陷入局部最优,在火灾发生时能够快速准确地规划疏散路径,将逃生人员快速安全疏散到远离火场的安全出口。