期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于区块链的联邦蒸馏数据共享模型研究 被引量:2
1
作者 刘炜 刘宇昭 +3 位作者 唐琮轲 王媛媛 佘维 田钊 《计算机科学》 CSCD 北大核心 2024年第3期39-47,共9页
零散、孤立的海量数据形成“数据孤岛”使得数据无法交互和连接,如何在保护原始数据隐私的前提下安全有效地共享数据中的知识信息已成为热点研究问题。基于以上内容,提出了一种基于区块链的联邦蒸馏数据共享模型(BFDS)。区别于中心化架... 零散、孤立的海量数据形成“数据孤岛”使得数据无法交互和连接,如何在保护原始数据隐私的前提下安全有效地共享数据中的知识信息已成为热点研究问题。基于以上内容,提出了一种基于区块链的联邦蒸馏数据共享模型(BFDS)。区别于中心化架构,采用区块链联合多参与方组建教师网络,实现分布式协同工作;通过交换蒸馏输出的方式,传递数据中的知识信息,联合训练轻量化模型;提出了一种多权重节点可信评估算法,调用智能合约分配权重并生成可溯源全局软标签,降低因参与方质量差异而产生的负向影响。实验结果表明,BFDS模型能联合多参与方安全可信共享数据知识,协同蒸馏训练模型,降低了模型的部署成本;所提出的多权重节点评估算法能有效减小低质量节点的负向影响,提高了全局软标签的质量与安全性。 展开更多
关键词 区块链 知识蒸馏 数据共享 智能合约
在线阅读 下载PDF
基于区块链和动态评估的隐私保护联邦学习模型 被引量:4
2
作者 刘炜 唐琮轲 +3 位作者 马杰 田钊 王琦 佘维 《计算机研究与发展》 EI CSCD 北大核心 2023年第11期2583-2593,共11页
在联邦学习作为隐私保护技术被广泛应用的同时,也产生了中心服务器不稳定和联邦学习服务器与参与方交互造成的隐私泄露等新的挑战及安全问题.提出了一种基于区块链和动态评估的隐私保护联邦学习模型,利用区块链解决中心服务器的问题,通... 在联邦学习作为隐私保护技术被广泛应用的同时,也产生了中心服务器不稳定和联邦学习服务器与参与方交互造成的隐私泄露等新的挑战及安全问题.提出了一种基于区块链和动态评估的隐私保护联邦学习模型,利用区块链解决中心服务器的问题,通过本地训练使用稀疏化、全局模型更新使用差分隐私解决联邦学习过程中的隐私泄露问题,本地训练完成后用数字签名和双重Hash对比验证参与方身份和训练模型的所属权.此外,使用多权重动态评估方法计算单轮模型和参与方评估值作为参与方贡献的依据.实验结果表明,提出的模型可以有效解决联邦学习中的单点故障和局部模型验证问题,与传统联邦学习相比,使用稀疏化和差分隐私可以在略微损失准确率的情况下保障模型的安全性,并有效地为参与方进行评估,从而保证了激励机制的公平性. 展开更多
关键词 联邦学习 区块链 稀疏化 差分隐私 数字签名 动态评估
在线阅读 下载PDF
基于改进实数编码遗传算法的神经网络超参数优化 被引量:5
3
作者 佘维 李阳 +2 位作者 钟李红 孔德锋 田钊 《计算机应用》 CSCD 北大核心 2024年第3期671-676,共6页
针对神经网络超参数优化效果差、容易陷入次优解和优化效率低的问题,提出一种基于改进实数编码遗传算法(IRCGA)的深度神经网络超参数优化算法——IRCGA-DNN(IRCGA for Deep Neural Network)。首先,采用实数编码方式表示超参数的取值,使... 针对神经网络超参数优化效果差、容易陷入次优解和优化效率低的问题,提出一种基于改进实数编码遗传算法(IRCGA)的深度神经网络超参数优化算法——IRCGA-DNN(IRCGA for Deep Neural Network)。首先,采用实数编码方式表示超参数的取值,使超参数的搜索空间更灵活;然后,引入分层比例选择算子增加解集多样性;最后,分别设计了改进的单点交叉和变异算子,以更全面地探索超参数空间,提高优化算法的效率和质量。基于两个仿真数据集,验证IRCGA-DNN的毁伤效果预测性能和收敛效率。实验结果表明,在两个数据集上,与GA-DNN(Genetic Algorithm for Deep Neural Network)相比,所提算法的收敛迭代次数分别减少了8.7%和13.6%,均方误差(MSE)相差不大;与IGA-DNN(Improved GA-DNN)相比,IRCGA-DNN的收敛迭代次数分别减少了22.2%和13.6%。实验结果表明,所提算法收敛速度和预测性能均更优,能有效处理神经网络超参数优化问题。 展开更多
关键词 实数编码 遗传算法 超参数优化 进化神经网络 机器学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部