期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于VMD及模糊相关分类器的滚动轴承故障诊断 被引量:4
1
作者 刘婷婷 张迪 +1 位作者 王雪梅 葛明涛 《机械设计与制造》 北大核心 2019年第2期222-225,共4页
针对滚动轴承非平稳性的振动信号,提出一种基于变分模态分解(Variational Mode Decomposition,VMD)及模糊相关分类器的故障诊断方法。首先,对振动信号进行VMD分解,计算分解后分量与原信号的互信息值,利用互信息值提取无噪声分量,获得重... 针对滚动轴承非平稳性的振动信号,提出一种基于变分模态分解(Variational Mode Decomposition,VMD)及模糊相关分类器的故障诊断方法。首先,对振动信号进行VMD分解,计算分解后分量与原信号的互信息值,利用互信息值提取无噪声分量,获得重构信号;其次,利用模糊函数在处理非平稳信号方面的优越性,结合相关系数提出模糊相关分类器;最后,将多组不同工作状态的重构信号输入模糊相关分类器,对多组数据进行训练与测试。实验结果表明,该方法能够有效的诊断出滚动轴承三种工作状态,且检测率较支持向量机及神经网络高。 展开更多
关键词 滚动轴承 故障诊断 变分模态分解 模糊相关分类器
在线阅读 下载PDF
LMD及马氏距离敏感阈值的滚动轴承故障诊断 被引量:10
2
作者 葛明涛 董素鸽 《机械设计与制造》 北大核心 2015年第2期210-213,共4页
针对滚动轴承非平稳性的振动信号,提出了基于局部均值分解(Local Mean Decomposition,LMD)及马氏距离敏感阈值的滚动轴承故障诊断方法。首先,对振动信号进行LMD分解,获得一系列乘积函数(Production Function,PF),有的PF分量包含的故障... 针对滚动轴承非平稳性的振动信号,提出了基于局部均值分解(Local Mean Decomposition,LMD)及马氏距离敏感阈值的滚动轴承故障诊断方法。首先,对振动信号进行LMD分解,获得一系列乘积函数(Production Function,PF),有的PF分量包含的故障信息多,有的包含的少,为此采用K-L散度法提取出主要PF分量;计算主要PF分量的时域参数指标,将其组合成特征向量,根据马氏距离提出马氏距离敏感阈值来表征不同的故障状态,取多组正常信号的特征向量均值作为标准特征向量,计算未知特征向量与标准特征向量的马氏距离敏感阈值,从而对其故障状态进行识别。试验结果表明,在不同转速下,该方法能够有效的对滚动轴承故障进行识别,且效果较EMD方法好。 展开更多
关键词 滚动轴承 LMD K-L散度 马氏距离 故障诊断
在线阅读 下载PDF
总体局部特征尺度分解及ELM的滚动轴承故障诊断 被引量:3
3
作者 董素鸽 胡代弟 葛明涛 《机械设计与制造》 北大核心 2017年第2期226-230,共5页
针对滚动轴承非平稳性的振动信号,提出了基于总体局部特征尺度分解(Ensemble Local Characteristic-scale Decomposition,ELCD)及极限学习机的滚动轴承故障诊断方法。首先,对振动信号进行ELCD分解,获得一系列内禀尺度分量(Intrinsic Sca... 针对滚动轴承非平稳性的振动信号,提出了基于总体局部特征尺度分解(Ensemble Local Characteristic-scale Decomposition,ELCD)及极限学习机的滚动轴承故障诊断方法。首先,对振动信号进行ELCD分解,获得一系列内禀尺度分量(Intrinsic Scale Component,ISC);其次,根据分解后ISC分量计算时域指标、能量、相对熵,利用特征评估法提取敏感特征;最后,将敏感特征向量输入极限学习机(Extreme Learning Machine,ELM)进行训练与测试,从而识别滚动轴承的故障类型。对实验信号的分析表明,该方法能够有效的诊断出滚动轴承不同的工作状态,且效果较局部特征尺度分解方法好。 展开更多
关键词 滚动轴承 故障诊断 极限学习机 总体局部特征尺度分解 特征评估法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部