期刊文献+
共找到58篇文章
< 1 2 3 >
每页显示 20 50 100
基于GAIL方法的鱼类个体运动策略恢复方法
1
作者 宋婧菡 陈鹏宇 +4 位作者 徐俊 岳圣智 闵中原 刘晓阳 林远山 《现代电子技术》 北大核心 2025年第13期138-144,共7页
针对强化学习在鱼群行为策略中存在没有摆脱规则的限制、奖励函数依赖于先验规则、无法完全刻画物体行为策略的局限性,文中提出一种基于生成对抗模仿学习(GAIL)的方法,从鱼类集群运动轨迹数据中恢复个体运动轨迹策略。设计鱼类个体的状... 针对强化学习在鱼群行为策略中存在没有摆脱规则的限制、奖励函数依赖于先验规则、无法完全刻画物体行为策略的局限性,文中提出一种基于生成对抗模仿学习(GAIL)的方法,从鱼类集群运动轨迹数据中恢复个体运动轨迹策略。设计鱼类个体的状态和动作表示,利用全连接神经网络表达鱼类个体运动的决策过程,并在实验中使用一个学习者及多个使用Vicsek模型导航的教师个体进行验证。实验结果表明,GAIL方法能够有效恢复鱼类个体的轨迹行为策略,提供了一种高效的策略学习途径,能够应用于其他生物集群行为的研究和模拟。通过对集群行为的深入分析,揭示了个体间的互动规律和群体动态,为人工智能在生物行为研究中的应用提供了新的思路。 展开更多
关键词 生成对抗模仿学习 鱼类集群行为 运动策略恢复 人工智能应用 Vicsek模型 全连接神经网络
在线阅读 下载PDF
基于图像处理技术的海洋微藻数量统计方法 被引量:4
2
作者 郭显久 张国胜 耿春云 《大连海洋大学学报》 CAS CSCD 北大核心 2012年第4期368-372,共5页
根据海洋微藻显微图像的特点,利用图像处理技术给出了自动统计海洋微藻数量的方法。该方法首先对微藻图像进行小波去噪,并对去噪后的图像通过形态学的膨胀运算进行增强;然后利用最大类间方差法和形态学的开运算对增强后的图像进行分割;... 根据海洋微藻显微图像的特点,利用图像处理技术给出了自动统计海洋微藻数量的方法。该方法首先对微藻图像进行小波去噪,并对去噪后的图像通过形态学的膨胀运算进行增强;然后利用最大类间方差法和形态学的开运算对增强后的图像进行分割;最后对分割后的二值图像进行微藻区域标记,统计出在图像中的微藻数量,进而计算出水体中微藻的浓度。利用本文中所给出的方法编写了海洋微藻数量自动统计软件,仿真试验结果表明,该方法有效、可行。 展开更多
关键词 海洋微藻 图像处理 微藻数量统计 最大类间方差法
在线阅读 下载PDF
基于多模态背景抑制的鱼类摄食强度识别
3
作者 王昊 汪淼 +4 位作者 龙金龙 韩爱辉 吴俊峰 孙群汶 于红 《大连海洋大学学报》 北大核心 2025年第3期499-509,共11页
为实现高效、精准、智能的鱼类投喂,以降低人员劳动强度、减少养殖成本,提出了一种基于多模态背景抑制网络(cross-modal background suppression network,CMBS)的鱼类摄食强度识别方法。CMBS网络基于多模态协同注意力机制、多头注意力... 为实现高效、精准、智能的鱼类投喂,以降低人员劳动强度、减少养殖成本,提出了一种基于多模态背景抑制网络(cross-modal background suppression network,CMBS)的鱼类摄食强度识别方法。CMBS网络基于多模态协同注意力机制、多头注意力融合模块和时间级、事件级的背景抑制模块,提高模型对重要特征区域的关注程度,降低单模态中存在的突发性噪音及视听信息不同步等问题对预测结果的影响;为评估本方法的有效性,分别在网络公开数据集AFFIA3K(实验室环境下采集的鱼类数据)与循环水养殖场(企业真实养殖环境下自采的鱼类数据)进行了方法验证与分析,并与目前主流的7类深度学习网络模型进行了对比分析。结果表明:CMBS模型对AFFIA3K数据集的摄食强度三分类准确率达到98.70%,高于传统单模态模型;对循环水养殖环境下的黄带拟鲹数据集的摄食强度三分类精度达到92.20%。研究表明,本文提出的CMBS网络模型具有较高的识别准确率,在真实的复杂循环水养殖环境下具有较强的抗干扰能力与稳定性。 展开更多
关键词 鱼类投喂 多模态 背景抑制 注意力机制 真实养殖环境
在线阅读 下载PDF
融合N-Gram和多重注意力机制的能源领域新词发现方法
4
作者 王祎涵 张思佳 +2 位作者 曹恒 刘珈宁 张正龙 《科学技术与工程》 北大核心 2025年第18期7668-7677,共10页
随着能源行业的快速发展和技术革新,大量的专业术语和表达方式不断更新,新词不断涌现。然而,传统的新词发现方法通常依赖于词典或规则,且难以高效率地处理和更新大量的专业术语,特别是在快速变化的能源领域。因此,结合能源领域文本数据... 随着能源行业的快速发展和技术革新,大量的专业术语和表达方式不断更新,新词不断涌现。然而,传统的新词发现方法通常依赖于词典或规则,且难以高效率地处理和更新大量的专业术语,特别是在快速变化的能源领域。因此,结合能源领域文本数据特性,提出了一种融合N-Gram和多重注意力机制的能源领域新词发现方法(new word discovery method in the energy field combining N-Gram and multiple attention mechanism, ENFM)。该方法首先利用N-Gram模型对能源领域的文本数据进行初步处理,通过统计和分析词频来生成新词候选列表。随后,引入融合多重注意力机制的ERNIE-BiLSTM-CRF模型,以进一步提升新词发现的准确性和效率。与传统的新词发现技术相比,在新词的准确识别和整体效率上均有显著提升,将其于能源领域政策文本数据集,准确率、召回率和F1分别为95.71%、95.56%、95.63%。实验结果表明,该方法能够准确地在能源领域的大量文本数据中识别新词,有效识别出能源领域特有的词汇和表达方式,显著提高了中文分词任务中对能源领域专业术语的识别能力。 展开更多
关键词 能源领域 新词发现 预训练模型 N-GRAM 中文分词
在线阅读 下载PDF
基于模态分解和深度学习的锂离子电池寿命预测
5
作者 董作林 宋金岩 孟子迪 《储能科学与技术》 北大核心 2025年第4期1645-1653,共9页
随着新能源汽车数量的快速增长,精准预测锂离子电池的剩余使用寿命(remaining useful life,RUL)对新能源汽车产业的持续发展起到了至关重要的作用。本工作提出了一种基于集成经验模态分解(ensemble empirical mode decomposition,EEMD)... 随着新能源汽车数量的快速增长,精准预测锂离子电池的剩余使用寿命(remaining useful life,RUL)对新能源汽车产业的持续发展起到了至关重要的作用。本工作提出了一种基于集成经验模态分解(ensemble empirical mode decomposition,EEMD)和深度学习的创新方法,旨在提升锂离子电池RUL的预测精度。首先,通过EEMD对电池容量数据进行多尺度分解,得到电池容量数据的全局退化趋势和局部随机波动分量。为了减轻噪声对模型预测精确度的干扰,引入去噪自编码器(denoising autoencoder,DAE)对随机波动分量进行降噪处理。随后,分别使用长短期记忆(long short-term memory,LSTM)网络和自注意力模型(Transformer)对全局退化趋势和降噪后的随机波动分量进行建模。最后为进一步提取各模态分量中存在的信息,采用随机森林(random forest,RF)算法计算各分量的重要性权重,根据得到的权重值对预测结果加权重构。本工作在美国国家航空航天局(National Aeronautics and Space Administration,NASA)公开的电池数据集上分别使用40%和60%的历史数据进行实验,结果表明所提出的方法在精度和有效性方面均优于现有方法,验证了其在锂离子电池RUL预测中的应用潜力。 展开更多
关键词 锂离子电池 寿命预测 深度学习 长短期记忆 随机森林
在线阅读 下载PDF
基于改进YOLOv8s与ByteTrack的养殖海参计数方法
6
作者 王芳 洪胜呈 +3 位作者 刘可心 温佳伟 张滨 林远山 《农业工程学报》 北大核心 2025年第13期234-242,共9页
为解决海参养殖过程中人工采样计数方法成本高、效率低、误差大等问题,该研究提出一种基于改进YOLOv8s和ByteTrack的自动化养殖海参计数方法。该方法由检测、跟踪和计数3个部分组成:在检测部分,针对YOLO系列检测器在水下环境中检测性能... 为解决海参养殖过程中人工采样计数方法成本高、效率低、误差大等问题,该研究提出一种基于改进YOLOv8s和ByteTrack的自动化养殖海参计数方法。该方法由检测、跟踪和计数3个部分组成:在检测部分,针对YOLO系列检测器在水下环境中检测性能不足问题,提出改进模型YOLOv8s-BB。通过在Backbone和Neck部位分别引入BCAM(BiFormer convolutional attention module)和BiFormer注意力模块增强其特征提取和融合能力,提升检测精度;在跟踪部分,针对ByteTrack算法在水下环境中对目标关联匹配性能不佳问题,提出基于三级级联匹配的TriSORT跟踪算法,提升跟踪稳定性;在计数部分,设计了未激活轨迹去除计数法,对比分析了其与过线计数的性能差异。结果表明:YOLOv8s-BB检测器的平均精度达88.9%,召回率为77.8%,F1值为84.2%,相较于YOLOv8s、YOLOv7-tiny、YOLOv9s和YOLOv11s检测模型,均保持领先优势;TriSORT的多目标跟踪准确度(MOTA)和ID调和平均数(IDF1)达74.00%和85.03%,较ByteTrack分别提高6.55和5.54个百分点;未激活轨迹去除计数法平均计数精度达95.46%,绝对误差为1.90,明显优于过线计数法。该研究通过检测-跟踪-计数的全流程优化,实现了高效、准确的自动化养殖海参计数,为海参养殖的生物量估算、投喂管理、销售决策等关键环节提供可靠的数据支持。 展开更多
关键词 水产养殖 目标跟踪 种群计数 海参 水下视觉 深度学习
在线阅读 下载PDF
基于FasterYOLOv9-Slim的轻量级工厂化养殖鱼群识别
7
作者 张鑫 于红 +4 位作者 吴子健 程志澳 高陈成 杨宗轶 王悦 《渔业现代化》 北大核心 2025年第1期99-109,共11页
针对计算资源有限的工厂化养殖对鱼群识别精度和速度之间的平衡要求,提出一种基于YOLOv9和FasterNet改进的轻量级养殖鱼群识别模型FasterYOLOv9-Slim。首先在YOLOv9中引入轻量级骨干网络FasterNet以减少模型参数和计算量;其次利用高维... 针对计算资源有限的工厂化养殖对鱼群识别精度和速度之间的平衡要求,提出一种基于YOLOv9和FasterNet改进的轻量级养殖鱼群识别模型FasterYOLOv9-Slim。首先在YOLOv9中引入轻量级骨干网络FasterNet以减少模型参数和计算量;其次利用高维检测头剪枝(HDPrune)降低网络深度以减少干扰信息积累;最后结合改进的特征融合模块FasterRepNCSPELAN4和下采样模块ADown、DownSimper,构建高效的颈部网络(DFA-Neck),增强特征表达同时降低计算需求。为验证所提出算法的有效性,设计了消融试验和对比试验,消融试验结果表明,FasterNet和HDPrune分别在降低参数和减弱干扰信息方面起到有效作用,DFA-Neck在整体网络中有效地协调了两者;对比试验结果显示,FasterYOLOv9-Slim在工厂化养殖红鳍东方鲀数据集上的表现超越了YOLOv7、YOLOv8和YOLOv10系列模型中同等规模的先进识别模型,保证高精度的同时,参数值分别降低了34.14%、64.02%和22.22%。在与ShuffleNet、MobileNet和RepViT等先进轻量级网络的对比中展现出较好的综合性能。研究表明:该方法能够有效平衡模型在计算资源有限的工厂化养殖条件下鱼群识别的精度和速度。 展开更多
关键词 养殖鱼群 YOLOv9 目标识别 模型剪枝 轻量化
在线阅读 下载PDF
融合协同注意力机制与Transformer模型的鱼类异常行为多任务识别
8
作者 张艺爔 胡泽元 +4 位作者 左宇琪 贾松怡 刘吉航 陶红希 于红 《广东海洋大学学报》 北大核心 2025年第1期124-133,共10页
【目的】解决暗光、浑浊和高密度养殖环境下,对于单任务鱼类异常行为识别精确度不高以及相似性鱼类异常行为难以准确识别的问题。【方法】提出一种多任务学习情况下鱼类异常行为及其姿态估计研究框架,命名为PD-DETR。通过Transformer架... 【目的】解决暗光、浑浊和高密度养殖环境下,对于单任务鱼类异常行为识别精确度不高以及相似性鱼类异常行为难以准确识别的问题。【方法】提出一种多任务学习情况下鱼类异常行为及其姿态估计研究框架,命名为PD-DETR。通过Transformer架构实现端到端推理,平衡不同任务的损失权重,优化梯度冲突。通过自注意力编码器和协同注意力(SCSA)特征融合网络(SCSA-FPN),计算单鱼行为与鱼群行为的权重,平衡鱼群行为对个体行为的影响,降低相似性行为特征丢失。设计消融实验和模型对比实验,以证算法的有效性。【结果】PD-DETR在红鳍东方鲀(Takifugu rubripes)异常行为数据集上的识别精确率和平均精度分别达到95.1%和93.6%,较YOLOv11-det提升0.9%和0.3%;游动姿态估计精确率和平均精度分别达到91.2%和90.8%,较RT-DETR相比分别提升3.9%和4.4%;在多任务学习情况下异常识别任务和游动姿态估计任务的平均精度较单任务学习提升1.2%和1.7%。【结论】多任务学习网络PD-DETR实现了暗光、浑浊水质环境中的鱼类异常行为识别与游动姿态分析,有助于提高养殖效率,保障鱼类健康。 展开更多
关键词 鱼类异常行为 姿态估计 多任务学习 多任务梯度协调 Transformer模型
在线阅读 下载PDF
面向海洋牧场智能化建设的海珍品实时检测方法 被引量:5
9
作者 洪亮 王芳 +2 位作者 蔡克卫 陈鹏宇 林远山 《农业工程学报》 EI CAS CSCD 北大核心 2021年第9期304-311,共8页
海珍品检测对海洋牧场的智能化建设至关重要,在实时性和准确性方面仍有待提高。该研究提出一种改进的YOLOv3海珍品检测方法。利用深度可分离卷积替代YOLOv3中的标准卷积,得到一个轻量化网络模型DSC-YOLO(Depthwise Separable Convolutio... 海珍品检测对海洋牧场的智能化建设至关重要,在实时性和准确性方面仍有待提高。该研究提出一种改进的YOLOv3海珍品检测方法。利用深度可分离卷积替代YOLOv3中的标准卷积,得到一个轻量化网络模型DSC-YOLO(Depthwise Separable Convolution-YOLO);在数据预处理方面,采用图像增强方法UGAN提升海珍品图像清晰度,采用Mosaic数据增广方法丰富数据的多样性。在海珍品数据集上的试验结果显示,相较YOLOv3而言,所提模型大小减少70%,推理时间降低16%,召回率R提高了2.7%,平均准确率提高了2.4%,F1分数提高了0.4%。可见该方法模型小、实时性好,具有部署到移动设备上的潜力。 展开更多
关键词 深度学习 机器视觉 卷积神经网络 YOLOv3网络 深度可分离卷积 海珍品目标检测
在线阅读 下载PDF
基于仿生模式识别算法的海洋微藻识别研究 被引量:3
10
作者 耿春云 郭显久 《大连海洋大学学报》 CAS CSCD 北大核心 2014年第5期525-529,共5页
依据微藻个体及成像的特点,给出了矩形度、能量、熵、惯性矩、相关度和局部平稳度等形状和纹理参数作为识别的特征值,并利用仿生模式识别算法对海洋微藻实现自动识别。利用文中给出的方法,对在海域中随机采集的不同形状、大小、纹理的... 依据微藻个体及成像的特点,给出了矩形度、能量、熵、惯性矩、相关度和局部平稳度等形状和纹理参数作为识别的特征值,并利用仿生模式识别算法对海洋微藻实现自动识别。利用文中给出的方法,对在海域中随机采集的不同形状、大小、纹理的微藻混合图像进行识别实验,结果显示,该方法能够准确识别出图像中不同种及同种不同状态下的藻体,说明该方法在微藻图像识别中是有效和可行的。 展开更多
关键词 海洋微藻 图像处理 形状特征 纹理特征 仿生模式识别
在线阅读 下载PDF
基于规则匹配与深度学习AbTransformer的渔业标准表格信息抽取方法
11
作者 孙哲涛 于红 +5 位作者 宋奇书 李光宇 邵立铭 杨惠宁 张思佳 孙华 《大连海洋大学学报》 CAS CSCD 北大核心 2023年第1期140-148,共9页
为解决渔业标准文本中表格结构多样、表头位置不固定导致抽取效果不佳的问题,提出一种结合规则匹配(rule-based-matching,RBM)与AbTransformer(Absolute Transformer)深度学习模型的表格信息抽取方法,该方法对规则类表格信息采用规则模... 为解决渔业标准文本中表格结构多样、表头位置不固定导致抽取效果不佳的问题,提出一种结合规则匹配(rule-based-matching,RBM)与AbTransformer(Absolute Transformer)深度学习模型的表格信息抽取方法,该方法对规则类表格信息采用规则模板与BERT-BiLSTM-CRF模型进行信息抽取,对非规则类表格信息采用改进的Transformer进行抽取,即在位置编码模块中引入行位置编码,与特征向量拼接以获取表格行列位置。结果表明:本文中提出的AbTransformer模型相较于机器学习MLP模型,AUC值提升了1.46%,相较于TabTransformer模型,AUC值提高了1.18%;本文中提出的RBM-AbTransformer模型与AbTransformer模型相比,准确率、召回率和F1值分别提高了7.78%、4.19%和5.27%。研究表明,结合RBM与AbTransformer的渔业标准表格信息抽取方法,有效解决了表格结构多样、表头位置不固定的问题,提升了渔业标准表格信息抽取的整体效果。 展开更多
关键词 渔业标准 实体识别 表格信息抽取 深度学习 Transformer模型
在线阅读 下载PDF
基于改进YOLOv7的密集鱼群计数检测 被引量:3
12
作者 李尹佳 胡泽元 +4 位作者 涂万 张鹏 韦思学 于红 吴俊峰 《广东海洋大学学报》 CAS CSCD 北大核心 2024年第2期115-123,共9页
【目的】提高在水体浑浊和鱼群高密度聚集等复杂环境中的鱼群检测精度。【方法】提出一种基于双层路由注意力机制(BiFormer)和Normalized Wasserstein Distance(NWD)损失函数的改进YOLOv7的密集鱼群计数检测方法。在保留细粒度特征的基... 【目的】提高在水体浑浊和鱼群高密度聚集等复杂环境中的鱼群检测精度。【方法】提出一种基于双层路由注意力机制(BiFormer)和Normalized Wasserstein Distance(NWD)损失函数的改进YOLOv7的密集鱼群计数检测方法。在保留细粒度特征的基础上,提高模型对多尺度特征的学习能力,同时降低模型对模糊图像中小目标位置偏差的敏感性,加强对浑浊水域中鱼群的识别能力。为评估该模型的有效性,在红鳍东方鲀(Takifugu rubripes)数据集上与其他网络模型进行对比实验。【结果】该方法在红鳍东方鲀数据集上的准确率和召回率分别达到98.05%和97.69%,平均精度达到99.10%,较YOLOv7相比分别提升2.46%、3.73%和2.62%。与目前检测准确率较高的其他水下目标检测模型相比,平均精度平均提高4.25%。【结论】实现真实养殖环境下浑浊水域中鱼群的准确检测,有助于科学指导工业化水产养殖的生产管理,提高养殖效率,减少资源浪费。 展开更多
关键词 水产养殖 鱼类检测 深度学习 YOLOv7 BiFormer NWD
在线阅读 下载PDF
基于Mel声谱图与改进SEResNet的鱼类行为识别 被引量:6
13
作者 杨雨欣 于红 +3 位作者 杨宗轶 涂万 张鑫 林远山 《渔业现代化》 CSCD 北大核心 2024年第1期56-63,共8页
养殖环境中饲料投放、水流变化等刺激源导致鱼类声音分辨难,使行为识别准确率不高,为解决上述问题,提出基于Mel声谱图(Mel spectrogram)与改进SEResNet的鱼类行为识别模型TAP-SEResNet。首先针对鱼类行为声音频率波动大、特征差异小,造... 养殖环境中饲料投放、水流变化等刺激源导致鱼类声音分辨难,使行为识别准确率不高,为解决上述问题,提出基于Mel声谱图(Mel spectrogram)与改进SEResNet的鱼类行为识别模型TAP-SEResNet。首先针对鱼类行为声音频率波动大、特征差异小,造成特征提取难的问题,采用高分辨率、特征表示较好的Mel声谱图以捕捉鱼类声音的频谱特征。其次针对鱼类声音特征关键信息易丢失的难题,提出在SEResNet模型中融合时序聚合池化层(Temporal Aggregated Pooling,TAP),提取池化区域的最大值和平均值,保留鱼类行为更多细粒度声音特征,提高识别准确率。为验证所提模型的有效性,分别设计了消融试验和模型性能对比试验,试验结果显示:TAP-SEResNet相比SEResNet在不降低检测速度的条件下准确率提升了3.23%;相比PANNS-CNN14、ECAPA-TDNN及MFCC+ResNet等先进声音识别模型,TAP-SEResNet在准确率上分别提升了5.32%、2.80%和1.64%。所提模型有助于养殖过程中对鱼类行为实现精准监测,对精准养殖具有重要的推动作用。 展开更多
关键词 鱼类行为识别 被动水声信号 Mel声谱图 SEResNet
在线阅读 下载PDF
大模型在水产养殖病害防治中的创新应用与展望 被引量:4
14
作者 张思佳 于红 《大连海洋大学学报》 CAS CSCD 北大核心 2024年第3期369-382,共14页
大模型是具有大量参数和复杂结构的机器学习基础模型,目前正在逐渐成为科技发展的重要方向之一。本文阐述了大模型应用的核心技术,并探讨了其运行所需的基本条件及大模型在辅助水产养殖病害防治中的具体应用,包括大模型辅助水产养殖病... 大模型是具有大量参数和复杂结构的机器学习基础模型,目前正在逐渐成为科技发展的重要方向之一。本文阐述了大模型应用的核心技术,并探讨了其运行所需的基本条件及大模型在辅助水产养殖病害防治中的具体应用,包括大模型辅助水产养殖病害防治与管理、协同水产养殖环境监测与疾病防治、水产药物研发、水产动物疾病抗性培育组学技术中的应用,并从数据获取与处理、模型适应性与泛化能力、计算资源与训练成本、隐私与安全、模型解释性与用户接受度、多任务学习与优先级管理、跨区域数据共享与合作、知识图谱增强大模型集成与利用等方面提出了大模型的未来发展趋势,以期为大模型在水产养殖病害防治领域的进一步应用提供有力支持,推动水产养殖业向更高效、可持续的方向发展。 展开更多
关键词 大模型 水产养殖 病害防治 智慧化 深度学习
在线阅读 下载PDF
SFSR-Age:一种基于人脸强语义的年龄识别算法 被引量:2
15
作者 孙旭菲 缪新颖 +2 位作者 毕甜甜 王水涛 喻芳宇 《吉林大学学报(理学版)》 CAS 北大核心 2024年第2期347-356,共10页
针对因光照、拍摄角度及图片质量等因素导致的经典深度学习算法难以有效提取人脸特征、人物身份识别准确率难以达到理想精度的问题,提出一种基于人脸强语义的年龄识别算法.首先,通过注意力矩阵增强人脸区域的特征权重,达到提取特征区域... 针对因光照、拍摄角度及图片质量等因素导致的经典深度学习算法难以有效提取人脸特征、人物身份识别准确率难以达到理想精度的问题,提出一种基于人脸强语义的年龄识别算法.首先,通过注意力矩阵增强人脸区域的特征权重,达到提取特征区域的目的;其次,使用级联双向长短期记忆(Bi-LSTM)网络学习时序帧之间的特征依赖关系,弥补部分特征缺失对识别精度的影响.在人脸数据集IMDB-WIKI和数据集Adience上进行测试,该算法的年龄识别准确率分别达到78.34%和77.89%.实验结果表明,相比于其他基于深度学习算法的方法,该算法在基于图片数据集的人物年龄识别任务上具有更高的准确率. 展开更多
关键词 年龄识别 人脸识别 深度学习算法 注意力矩阵 级联Bi-LSTM
在线阅读 下载PDF
基于多视图关注网络的图文多模态情感分析模型
16
作者 丛子涵 张思佳 《现代电子技术》 北大核心 2024年第12期157-164,共8页
针对现有多模态情感分类模型无法全面、准确地捕获复杂的情感信息,以及融合过程中没有充分挖掘两者之间的潜在关联,导致模型结构冗余复杂、计算效率低下的问题,提出一种多视图关注网络(MPF-Net)模型。该模型通过引入多维感知特征捕获机... 针对现有多模态情感分类模型无法全面、准确地捕获复杂的情感信息,以及融合过程中没有充分挖掘两者之间的潜在关联,导致模型结构冗余复杂、计算效率低下的问题,提出一种多视图关注网络(MPF-Net)模型。该模型通过引入多维感知特征捕获机制,全面而精确地获取图像和文本中蕴含的情感信息;其次,采用增强的记忆互动学习机制,使模型能够更加有效地提取和融合单模态特征,并在多轮迭代中不断更新和优化这些特征,从而捕捉到更深层次的情感细节;再构建一个高级深度学习框架,该框架采用生成对抗网络(GAN)与池化技术的深度融合单元,以实现复杂数据特征的高效提取与整合;最后,在保留原有特征信息的基础上进行特征整合,同时通过降维技术降低模型的复杂性,提高计算效率。在公开数据集MVSA-Single和MVSA-Multiple以及自建数据集上通过实验验证所提模型的准确性,结果表明,与多个基线模型对比,所提模型的准确率和F1值均有所提高。 展开更多
关键词 多模态情感分析 对抗学习 多视图网络 生成对抗网络 文本特征提取 特征融合
在线阅读 下载PDF
融合实体语义的实体关系抽取联合解码
17
作者 张鑫 张思佳 《现代电子技术》 北大核心 2024年第14期41-45,共5页
针对复杂语境中存在多义词或上下文联系不强的实体,导致模型难以正确识别其关系的问题,提出一种基于BERT和联合解码的实体关系抽取模型。该模型首先采用BERT对实体进行语义编码,提取出实体的上下文信息;然后,利用自注意力机制标记出头实... 针对复杂语境中存在多义词或上下文联系不强的实体,导致模型难以正确识别其关系的问题,提出一种基于BERT和联合解码的实体关系抽取模型。该模型首先采用BERT对实体进行语义编码,提取出实体的上下文信息;然后,利用自注意力机制标记出头实体,并对尾实体进行预测;最后,设计联合解码机制,结合实体语义信息和关系抽取任务进行联合解码。实验结果表明,与基准模型相比,所提模型在纽约时报(NYT)数据集和WebNLG数据集上的准确率和F1值均有所提高,能够有效地提高实体关系提取的准确性。 展开更多
关键词 实体关系抽取 实体语义 BERT 联合编码 自注意力机制 知识图谱
在线阅读 下载PDF
基于YOLOv7-tiny的轻量化海珍品检测算法
18
作者 陈俊逸 曹立杰 +2 位作者 吴军 罗佳璐 何植仟 《计算机应用》 CSCD 北大核心 2024年第S01期319-323,共5页
针对当前海珍品捕捞机器人使用的水下目标检测算法参数量大,不适合部署在移动设备上等问题,提出一种基于YOLOv7-tiny(You Only Look Once version 7-tiny)的轻量化海珍品检测算法ES YOLOv7-tiny(EfficientNet-S YOLOv7-tiny)。在YOLOv7-... 针对当前海珍品捕捞机器人使用的水下目标检测算法参数量大,不适合部署在移动设备上等问题,提出一种基于YOLOv7-tiny(You Only Look Once version 7-tiny)的轻量化海珍品检测算法ES YOLOv7-tiny(EfficientNet-S YOLOv7-tiny)。在YOLOv7-tiny基础上,首先,将骨干网络替换为改进的EfficientNet(EfficientNet-S),并将颈部网络中卷积核大小为3×3卷积替换为轻量化卷积,达到降低参数量的目的;其次,使用k-means++算法聚类锚框尺寸,提高推理速度;最后,使用知识蒸馏算法进一步提高精度。在RUIE(Real-world Underwater Image Enhancement)数据集上,所提算法平均精度均值(mAP)达到73.7%,检测速度达到123 frame/s,参数量为4.45×10^(6),与原YOLOv7-tiny算法相比,在mAP上提升了1.2个百分点,检测速度提升25 frame/s,参数量降低了1.56×10^(6)。实验结果表明,所提算法在提升精度的同时降低了参数量,并且加快了检测速度,证明了该算法的有效性。 展开更多
关键词 海珍品 目标检测 YOLOv7-tiny 轻量化 k-means++
在线阅读 下载PDF
基于改进BiRTE的渔业健康养殖标准复杂关系抽取
19
作者 宋奇书 于红 +4 位作者 乔诗晗 罗璇 李光宇 邵立铭 张思佳 《大连海洋大学学报》 CAS CSCD 北大核心 2024年第1期153-161,共9页
为解决渔业健康养殖标准文本关系抽取领域特定性强、语意复杂导致关系抽取准确率不高等问题,提出了基于改进BiRTE的渔业健康养殖标准复杂关系抽取方法,针对实体和语义关联建模,将RoBERTa作为编码器,采用全词掩码和动态掩码的方式增强词... 为解决渔业健康养殖标准文本关系抽取领域特定性强、语意复杂导致关系抽取准确率不高等问题,提出了基于改进BiRTE的渔业健康养殖标准复杂关系抽取方法,针对实体和语义关联建模,将RoBERTa作为编码器,采用全词掩码和动态掩码的方式增强词向量特征表示,并在此基础上融合了自注意力机制(Self-Attention, SelfATT)将实体特征与关系特征结合聚焦,加强实体抽取与关系预测的联系,从而提升渔业标准文本抽取的准确性。结果表明:本文提出的基于改进BiRTE的渔业健康养殖标准复杂关系抽取模型(RoBERTa-BiRTE-SelfATT)对渔业标准复杂关系抽取的准确率、召回率和F1值分别为95.9%、95.4%、95.7%,较BiRTE模型分别提升了4.2%、3.1%、3.8%。研究表明,本文提出的渔业健康养殖标准复杂关系抽取模型RoBERTa-BiRTE-SelfATT可以有效解决渔业标准文本关系抽取中专有名词识别不准确、语意复杂导致实体关系难以抽取的问题,是一种有效的渔业标准复杂关系抽取方法。 展开更多
关键词 渔业标准 关系抽取 重叠关系 复杂关系 自注意力机制
在线阅读 下载PDF
基于词向量和条件随机场的领域术语识别方法 被引量:24
20
作者 冯艳红 于红 +1 位作者 孙庚 赵禹锦 《计算机应用》 CSCD 北大核心 2016年第11期3146-3151,共6页
针对基于统计特征的领域术语识别方法忽略了术语的语义和领域特性,从而影响识别结果这一问题,提出一种基于词向量和条件随机场(CRF)的领域术语识别方法。该方法利用词向量具有较强的语义表达能力、词语与领域术语之间的相似度具有较强... 针对基于统计特征的领域术语识别方法忽略了术语的语义和领域特性,从而影响识别结果这一问题,提出一种基于词向量和条件随机场(CRF)的领域术语识别方法。该方法利用词向量具有较强的语义表达能力、词语与领域术语之间的相似度具有较强的领域表达能力这一特点,在统计特征的基础上,增加了词语的词向量与领域术语的词向量之间的相似度特征,构成基于词向量的特征向量,并采用CRF方法综合这些特征实现了领域术语识别。最后在领域语料库和Sogou CA语料库上进行实验,识别结果的准确率、召回率和F测度分别达到了0.985 5、0.943 9和0.964 3,表明所提的领域术语识别方法取得了较好的效果。 展开更多
关键词 词向量 条件随机场 术语识别 相似度特征
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部