期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于YOLOv7-tiny的轻量化海珍品检测算法
1
作者 陈俊逸 曹立杰 +2 位作者 吴军 罗佳璐 何植仟 《计算机应用》 CSCD 北大核心 2024年第S01期319-323,共5页
针对当前海珍品捕捞机器人使用的水下目标检测算法参数量大,不适合部署在移动设备上等问题,提出一种基于YOLOv7-tiny(You Only Look Once version 7-tiny)的轻量化海珍品检测算法ES YOLOv7-tiny(EfficientNet-S YOLOv7-tiny)。在YOLOv7-... 针对当前海珍品捕捞机器人使用的水下目标检测算法参数量大,不适合部署在移动设备上等问题,提出一种基于YOLOv7-tiny(You Only Look Once version 7-tiny)的轻量化海珍品检测算法ES YOLOv7-tiny(EfficientNet-S YOLOv7-tiny)。在YOLOv7-tiny基础上,首先,将骨干网络替换为改进的EfficientNet(EfficientNet-S),并将颈部网络中卷积核大小为3×3卷积替换为轻量化卷积,达到降低参数量的目的;其次,使用k-means++算法聚类锚框尺寸,提高推理速度;最后,使用知识蒸馏算法进一步提高精度。在RUIE(Real-world Underwater Image Enhancement)数据集上,所提算法平均精度均值(mAP)达到73.7%,检测速度达到123 frame/s,参数量为4.45×10^(6),与原YOLOv7-tiny算法相比,在mAP上提升了1.2个百分点,检测速度提升25 frame/s,参数量降低了1.56×10^(6)。实验结果表明,所提算法在提升精度的同时降低了参数量,并且加快了检测速度,证明了该算法的有效性。 展开更多
关键词 海珍品 目标检测 YOLOv7-tiny 轻量化 k-means++
在线阅读 下载PDF
基于词向量和条件随机场的领域术语识别方法 被引量:24
2
作者 冯艳红 于红 +1 位作者 孙庚 赵禹锦 《计算机应用》 CSCD 北大核心 2016年第11期3146-3151,共6页
针对基于统计特征的领域术语识别方法忽略了术语的语义和领域特性,从而影响识别结果这一问题,提出一种基于词向量和条件随机场(CRF)的领域术语识别方法。该方法利用词向量具有较强的语义表达能力、词语与领域术语之间的相似度具有较强... 针对基于统计特征的领域术语识别方法忽略了术语的语义和领域特性,从而影响识别结果这一问题,提出一种基于词向量和条件随机场(CRF)的领域术语识别方法。该方法利用词向量具有较强的语义表达能力、词语与领域术语之间的相似度具有较强的领域表达能力这一特点,在统计特征的基础上,增加了词语的词向量与领域术语的词向量之间的相似度特征,构成基于词向量的特征向量,并采用CRF方法综合这些特征实现了领域术语识别。最后在领域语料库和Sogou CA语料库上进行实验,识别结果的准确率、召回率和F测度分别达到了0.985 5、0.943 9和0.964 3,表明所提的领域术语识别方法取得了较好的效果。 展开更多
关键词 词向量 条件随机场 术语识别 相似度特征
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部