期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
恶劣天气情况下基于随机森林算法的交通流量预测 被引量:7
1
作者 徐秀娟 白玉林 +2 位作者 徐璐 许真珍 赵小薇 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第2期25-31,共7页
针对恶劣天气情况,提出基于随机森林交通流量预测模型,基于2016年纽约市出租车数据以及天气情况,对原始GPS数据进行层层筛选,筛选出符合恶劣天气条件定义的数据,以随机森林回归方法为基础研究恶劣天气下交通流量的预测模型,并通过调整... 针对恶劣天气情况,提出基于随机森林交通流量预测模型,基于2016年纽约市出租车数据以及天气情况,对原始GPS数据进行层层筛选,筛选出符合恶劣天气条件定义的数据,以随机森林回归方法为基础研究恶劣天气下交通流量的预测模型,并通过调整模型的超参数改善了模型的性能;同时将随机森林模型与BP神经网络模型和决策树模型做了性能对比,随机森林预测模型最终取得的实验结果较好。 展开更多
关键词 交通流量预测 随机森林 恶劣天气 自举集成
在线阅读 下载PDF
机器学习安全攻击与防御机制研究进展和未来挑战 被引量:29
2
作者 李欣姣 吴国伟 +2 位作者 姚琳 张伟哲 张宾 《软件学报》 EI CSCD 北大核心 2021年第2期406-423,共18页
机器学习的应用遍及人工智能的各个领域,但因存储和传输安全问题以及机器学习算法本身的缺陷,机器学习面临多种面向安全和隐私的攻击.基于攻击发生的位置和时序对机器学习中的安全和隐私攻击进行分类,分析和总结了数据投毒攻击、对抗样... 机器学习的应用遍及人工智能的各个领域,但因存储和传输安全问题以及机器学习算法本身的缺陷,机器学习面临多种面向安全和隐私的攻击.基于攻击发生的位置和时序对机器学习中的安全和隐私攻击进行分类,分析和总结了数据投毒攻击、对抗样本攻击、数据窃取攻击和询问攻击等产生的原因和攻击方法,并介绍和分析了现有的安全防御机制.最后,展望了安全机器学习未来的研究挑战和方向. 展开更多
关键词 机器学习 安全和隐私 攻击分类 防御机制
在线阅读 下载PDF
基于中文微博的情绪分类与预测算法 被引量:16
3
作者 郝苗苗 徐秀娟 +2 位作者 于红 赵小薇 许真珍 《计算机应用》 CSCD 北大核心 2018年第A02期89-96,共8页
为解决中文网络短文本情感多分类及预测问题,提出基于微博数据的针对微博上某一领域的人表达的情感进行多分类以及预测的算法。通过对微博数据特点的研究分析提出了一种基于词典的权重规则算法,构建了微博情绪分析词典,识别微博所表达的... 为解决中文网络短文本情感多分类及预测问题,提出基于微博数据的针对微博上某一领域的人表达的情感进行多分类以及预测的算法。通过对微博数据特点的研究分析提出了一种基于词典的权重规则算法,构建了微博情绪分析词典,识别微博所表达的5种情感极性:过度积极、轻微积极、中性、轻微消极、过度消极;提出了一种基于监督学习的分类方法对微博的情感极性进行分类预测,提取文本特征构建特征向量等对5种监督学习分类方法进行分析与讨论,实验分析结果准确率达到79. 9%。实验分析表明,与基于词典的权重规则算法相比,在微博细致情绪多分类类别识别中,基于监督学习的情绪分类预测方法能够有效提高短文本分类预测的准确率。 展开更多
关键词 微博文本分类 情绪分类预测 词典分析 监督学习 情感极性
在线阅读 下载PDF
CUDA-TP:基于GPU的自顶向下完整蛋白质鉴定并行算法 被引量:1
4
作者 段琼 田博 +2 位作者 陈征 王洁 何增有 《计算机研究与发展》 EI CSCD 北大核心 2018年第7期1525-1538,共14页
蛋白质及蛋白质翻译后修饰(post-translational modifications,PTMs)的鉴定是蛋白质组学研究的基础,对整个领域的进一步发展有着十分重要的意义.近年来,质谱设备的快速发展使得获取"自顶向下"(top-down,TD)的高精度完整蛋白... 蛋白质及蛋白质翻译后修饰(post-translational modifications,PTMs)的鉴定是蛋白质组学研究的基础,对整个领域的进一步发展有着十分重要的意义.近年来,质谱设备的快速发展使得获取"自顶向下"(top-down,TD)的高精度完整蛋白质质谱数据成为可能.目前基于TD质谱数据的完整蛋白质鉴定算法虽然在匹配精度、PTM位点的推断上取得了一些成效,但它们运行时间还有很大的不足和提升空间.利用图形处理器(graphics processing unit,GPU)可以将大规模的重复计算并行化,提高串行程序的执行速度.CUDA-TP算法基于通用并行计算架构(compute unified device architecture,CUDA)来计算蛋白质与TD质谱数据的匹配分数.首先,对每一个质谱数据,CUDA-TP利用优化的MS-Filter算法在蛋白质数据库中过滤出其对应的少数候选蛋白质集合,然后通过AVL(adelson-velskii and landis)树加速质谱匹配过程.GPU中的多线程技术被用来并行化谱图网格及最终数组中所有元素的前驱结点的求解.同时,该算法还使用target-decoy策略来控制蛋白质与质谱图匹配结果的错误发现率(false discovery rate,FDR).实验结果表明:CUDA-TP算法能够有效地加速完整蛋白质的鉴定,速度分别比MS-TopDown和MS-Align+快10倍与2倍.到目前为止,这是唯一能够利用CUDA架构来加速完整蛋白质鉴定的研究工作.CUDA-TP源代码公布在https://github.com/dqiong/CUDA-TP. 展开更多
关键词 “自顶向下”蛋白质组学 蛋白质鉴定 图形处理器 通用并行计算架构 谱图比对
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部