期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于分布式多关联属性的高维数据差分隐私保护方法 被引量:1
1
作者 褚治广 李俊燕 +1 位作者 陈昊 张兴 《计算机工程与设计》 北大核心 2024年第4期967-973,共7页
针对高维数据发布的过程中存在由多关联属性引发的隐私信息泄露风险问题,在分布式环境下提出一种满足差分隐私保护的多关联属性高维数据发布方法(HDMPDP)。根据数据维度,提出一种基于分布式划分的粗糙集高效降维方法,完成对高维复杂数... 针对高维数据发布的过程中存在由多关联属性引发的隐私信息泄露风险问题,在分布式环境下提出一种满足差分隐私保护的多关联属性高维数据发布方法(HDMPDP)。根据数据维度,提出一种基于分布式划分的粗糙集高效降维方法,完成对高维复杂数据特征属性的划分,降低数据维度的同时提高处理效率;设计属性分类准则,利用属性信息熵改进关联分析方法;对得到的属性分别进行加噪,优化噪声添加的方式,减轻关联属性带来的隐私问题。在Spark分布式框架下实现隐私保护数据发布,通过高维数据实验验证了该方法的有效性和隐私保护的安全性。 展开更多
关键词 高维数据 多关联属性 差分隐私 分布式 关联分析 粗糙集 隐私保护
在线阅读 下载PDF
基于KFCMSA的(k,l)加权社交网络匿名算法 被引量:1
2
作者 史伟 王园园 +1 位作者 李刚 张兴 《计算机应用研究》 CSCD 北大核心 2023年第10期3149-3154,共6页
图数据隐私保护的研究目前主要集中在简单图,适应范围有限。将权重图数据的隐私保护作为研究对象,可以改善权重图发布之后数据的可用性及有效性。针对在利用聚类匿名化方法处理社交网络数据时,需要增删大量的边和节点,造成严重的数据失... 图数据隐私保护的研究目前主要集中在简单图,适应范围有限。将权重图数据的隐私保护作为研究对象,可以改善权重图发布之后数据的可用性及有效性。针对在利用聚类匿名化方法处理社交网络数据时,需要增删大量的边和节点,造成严重的数据失真的问题进行了研究。提出了(k,l)加权社交网络匿名算法KFCMSA(联合k成员模糊聚类和模拟退火),并利用改进的簇划分算法将权重社交网络聚类成不同的簇,对同一簇中节点的边权重进行泛化,使节点满足l多样性。在实现k度匿名的同时有效减少了边的改变量,提高了数据的可用性,实现最优聚类的同时防止了同质性攻击。聚类质量实验和数据可用性分析表明该算法具有较高的性能优势和较高的边保留率。 展开更多
关键词 社交网络 权重图数据 隐私保护 模糊聚类 模拟退火
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部