期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
多智能体近端策略优化的动态武器目标分配
1
作者 宫华 王智昕 +1 位作者 许可 张勇 《兵器装备工程学报》 北大核心 2025年第7期93-104,共12页
针对地对空防御作战中武器与目标之间的动态关系,以及多类型武器协同作战的复杂性,研究了动态武器目标分配问题。考虑防护效能与成本之间的冲突关系,以最大化资产生存概率和最小化武器消耗成本为目标,结合武器制导能力、软杀伤武器充能... 针对地对空防御作战中武器与目标之间的动态关系,以及多类型武器协同作战的复杂性,研究了动态武器目标分配问题。考虑防护效能与成本之间的冲突关系,以最大化资产生存概率和最小化武器消耗成本为目标,结合武器制导能力、软杀伤武器充能特性、时间窗等关键约束,建立了多作战单元协同的动态武器目标分配优化模型。基于策略熵和随机噪声策略设计了改进的多智能体近端策略优化算法进行求解。实验仿真验证了所提出算法的有效性。 展开更多
关键词 地对空防御 动态武器目标分配 多智能体强化学习 近端策略优化 策略熵 随机噪声
在线阅读 下载PDF
智能算法优化XGBoost的聚能-爆破装药比冲量预测 被引量:3
2
作者 刘芳 李士伟 +2 位作者 卢熹 郭策安 马元婧 《小型微型计算机系统》 CSCD 北大核心 2024年第5期1076-1082,共7页
为了探索聚能-爆破装药结构、爆破距离等参数与比冲量间的复杂关系,提出一种智能算法优化极端梯度提升(eXtreme Gradient Boosting,XGBoost)的聚能-爆破装药比冲量预测模型.采用相关性分析方法,探寻聚能-爆破装药结构参数、爆破距离参... 为了探索聚能-爆破装药结构、爆破距离等参数与比冲量间的复杂关系,提出一种智能算法优化极端梯度提升(eXtreme Gradient Boosting,XGBoost)的聚能-爆破装药比冲量预测模型.采用相关性分析方法,探寻聚能-爆破装药结构参数、爆破距离参数与比冲量之间的关联程度.使用具有数据并行处理能力和集成学习思想的XGBoost算法,挖掘结构参数、爆破距离参数与比冲量间的潜在非线性关系.基于粒子群算法(Particle Swarm Optimization,PSO)良好的全局搜索能力和蚁群算法(Ant Colony Optimization,ACO)优良的局部搜索能力,设计双智能算法优化XGBoost的融合预测模型PSO-ACO-XGBoost,提高聚能-爆破装药比冲量预测精度.PSO和ACO分别用于搜索XGBoost超参数解空间的全局最优解与局部最优解.实验结果表明,PSO-ACO-XGBoost模型相较于BP、XGBoost、PSO-BP、ACO-XGBoost等其它8种预测模型,在预测精度、拟合程度、速度和稳定性等方面具有最佳性能. 展开更多
关键词 聚能装药 爆破装药 比冲量 极端梯度提升 粒子群算法 蚁群算法
在线阅读 下载PDF
基于PSO-CNN-XGBoost水下柱形装药峰值超压预测 被引量:4
3
作者 刘芳 李士伟 +1 位作者 卢熹 郭策安 《兵工学报》 EI CAS CSCD 北大核心 2024年第5期1602-1612,共11页
为探索水下柱形装药结构、爆距等参数与水下柱形装药峰值超压的关系,将装药样本数据视为二维数据,建立粒子群优化(Particle Swarm Optimization,PSO)算法、一维卷积神经网络(1D Convolutional Neural Network,1DCNN)和极端梯度提升(Extr... 为探索水下柱形装药结构、爆距等参数与水下柱形装药峰值超压的关系,将装药样本数据视为二维数据,建立粒子群优化(Particle Swarm Optimization,PSO)算法、一维卷积神经网络(1D Convolutional Neural Network,1DCNN)和极端梯度提升(Extreme Gradient Boosting,XGBoost)的水下柱形装药峰值超压融合预测算法。采用相关性分析与数据可视化方法,分析装药结构参数、爆距与峰值超压之间的关联关系。设计1DCNN深度网络挖掘不同长径比、爆距等参数与峰值超压之间的纵向时序关系。运用XGBoost算法寻找装药结构参数、爆距与峰值超压之间的横向非线性关系,提升小样本数据的预测精度。使用PSO算法优化1DCNN和XGBoost的超参数,获得最优算法结构。研究结果表明,在包含10种智能算法的对比实验中,PSO-CNN-XGBoost水下柱形装药峰值超压预测算法在精度、稳定性、拟合程度上均高于其他模型。 展开更多
关键词 水下柱形装药 长径比 爆距 峰值超压 粒子群优化算法 一维卷积神经网络 极端梯度提升
在线阅读 下载PDF
基于NanoDet-SimAM小尺寸松材线虫病受害木检测 被引量:3
4
作者 刘芳 姜生伟 +1 位作者 张峻豪 何姗 《沈阳工业大学学报》 CAS 北大核心 2024年第4期428-433,共6页
针对小尺寸松材线虫病受害木检测精度及检测效率低的问题,提出了一种融合深度网络和注意力机制的小尺寸松材线虫智能检测模型。采用无人机(UAV)搭载小型相机在220 m高度拍摄小尺寸松材线虫受害木图像,应用图像旋转、缩放、添加高斯噪声... 针对小尺寸松材线虫病受害木检测精度及检测效率低的问题,提出了一种融合深度网络和注意力机制的小尺寸松材线虫智能检测模型。采用无人机(UAV)搭载小型相机在220 m高度拍摄小尺寸松材线虫受害木图像,应用图像旋转、缩放、添加高斯噪声和模拟光照强度等数据处理方式扩充数据集,设计轻量级深度网络NanoDet和SimAM注意力模块融合模型NanoDet-SimAM对小尺寸松材线虫受害木进行精准检测。结果表明,该模型相较于Faster R-CNN、Yolov4、Yolov5s及NanoDet等检测网络模型,具有更高的检测精度、速度和稳定性。 展开更多
关键词 松材线虫病 目标检测 轻量级网络NanoDet 注意力机制 无参注意力 迁移学习 数据增强 小尺寸
在线阅读 下载PDF
基于DACO-BP的水下聚能装药峰值超压预测 被引量:3
5
作者 刘芳 张峻豪 +1 位作者 卢熹 郭策安 《兵器装备工程学报》 CAS CSCD 北大核心 2023年第6期17-24,102,共9页
为提高水下聚能装药爆炸冲击波参数预测的准确性和稳定性,基于AUTODYN数值仿真软件获取的装药爆炸仿真数据,提出了动态自适应蚁群算法(dynamic adaptive ant colony algorithm,DACO)优化BP(back propagation)神经网络(DACO-BP)的水下聚... 为提高水下聚能装药爆炸冲击波参数预测的准确性和稳定性,基于AUTODYN数值仿真软件获取的装药爆炸仿真数据,提出了动态自适应蚁群算法(dynamic adaptive ant colony algorithm,DACO)优化BP(back propagation)神经网络(DACO-BP)的水下聚能装药峰值超压预测模型。采用梅森旋转算法(mersennetwister,MT)对数据进行随机排序,提升模型对不同数据分布的泛化能力。设计信息素纯增长策略和挥发系数双曲线动态自适应调整策略,改善蚁群算法的全局寻优能力和收敛速度。将DACO算法获得的全局最优解映射到BP神经网络的权值和阈值,提高BP神经网络预测的精度和稳定性能。实验结果表明,动态自适应蚁群优化BP神经网络的水下聚能装药峰值超压预测模型具有良好的有效性、稳定性和可信性。 展开更多
关键词 水下聚能装药 峰值超压预测 数值模拟 BP神经网络 梅森旋转算法 蚁群 动态自适应蚁群
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部