传统的知识图谱表示学习模型主要聚焦于三元组内部的结构信息,而未能充分利用外部语义增强嵌入表征能力,如没有充分考虑实体间的多步关系路径信息以及不同路径的重要程度,且没有利用实体描述信息增强上下文感知能力。为提升知识图谱的...传统的知识图谱表示学习模型主要聚焦于三元组内部的结构信息,而未能充分利用外部语义增强嵌入表征能力,如没有充分考虑实体间的多步关系路径信息以及不同路径的重要程度,且没有利用实体描述信息增强上下文感知能力。为提升知识图谱的应用效果,提出融合多步关系路径和实体描述信息的知识图谱表示学习(MPDRL)模型。首先,对两实体间的路径信息进行编码,并使用自注意力机制计算路径权重,从而获得关系路径信息的表示;其次,使用BERT(Bidirectional Encoder Representations from Transformers)模型对实体描述信息进行编码,并利用双向注意力机制计算实体描述信息嵌入与三元组关系嵌入之间的注意力权重,从而增强实体的语义信息;最后,将关系路径信息嵌入、实体描述信息嵌入和三元组结构嵌入融合起来进行训练。为评估模型性能,在公开数据集上针对所提模型和基准模型进行链接预测和三元组分类的实验。结果表明:在链接预测任务中,与融合关系路径与实体描述信息的知识图谱表示学习方法(PDRL)、多跳关系路径模型Att-ConvBiLSTM以及融合实体描述与关系路径信息的知识图谱嵌入模型TPKGE相比,所提模型在FB15k-237数据集上的Hit@10指标分别提高了5.7、2.9、2.5个百分点;在三元组分类任务上,所提模型在FB15k-237和WN18RR数据集上的准确率较最优基准模型PDRL分别提升了2.81和0.90个百分点。展开更多
传统KNN查询是一种稳定性和准确率性能均较好的算法,但是在样本规模过大时,算法的计算效率受到影响较大,对此提出一种基于聚类中心文本串联的并行(Mapreduce for KNN,MKNN)文本分类算法。首先,基于文本聚类方式,对相似度较高的文档进...传统KNN查询是一种稳定性和准确率性能均较好的算法,但是在样本规模过大时,算法的计算效率受到影响较大,对此提出一种基于聚类中心文本串联的并行(Mapreduce for KNN,MKNN)文本分类算法。首先,基于文本聚类方式,对相似度较高的文档进行串联合并,并以合并文档取代原有独立文档进行KNN查询过程,可有效实现文本相似度指标计算量降维;其次,针对上述文本串联及KNN查询过程,构建基于Mapreduce算法的并行化KNN执行过程,实现算法计算效率的快速提升;最后,通过与同类单线程算法在文本分类精度和算法计算效率实验上对比显示,在保证足够精度前提下,所提算法分类速度可得到有效提升。展开更多
云计算业务平台的广泛应用强化了研究人员对于移动设备的依赖性。员工携带自己的设备(bring your own devices,BYOD)已经成为当前移动办公的主要趋势。针对BYOD环境中的数据泄露和恶意代码等问题,提出了一种跨平台的安全解决方案。该方...云计算业务平台的广泛应用强化了研究人员对于移动设备的依赖性。员工携带自己的设备(bring your own devices,BYOD)已经成为当前移动办公的主要趋势。针对BYOD环境中的数据泄露和恶意代码等问题,提出了一种跨平台的安全解决方案。该方案应用无客户端网络准入控制方式获取终端属性,并在向量表示法的基础上,为CPU空闲率等特殊属性设计了一种动态数值型评估方式。因此,该方案能够对进入网络的移动智能终端进行准确的可信评估,将终端分别判入可信域、非可信域和隔离域,确保最终进入网络的BYOD设备处于可信状态,以实现网络入口边界安全。实验结果表明,该方案比现有方案在移动智能终端安全状态的评估和防止对数据的非法访问等方面具有更好的效果。展开更多
文摘传统的知识图谱表示学习模型主要聚焦于三元组内部的结构信息,而未能充分利用外部语义增强嵌入表征能力,如没有充分考虑实体间的多步关系路径信息以及不同路径的重要程度,且没有利用实体描述信息增强上下文感知能力。为提升知识图谱的应用效果,提出融合多步关系路径和实体描述信息的知识图谱表示学习(MPDRL)模型。首先,对两实体间的路径信息进行编码,并使用自注意力机制计算路径权重,从而获得关系路径信息的表示;其次,使用BERT(Bidirectional Encoder Representations from Transformers)模型对实体描述信息进行编码,并利用双向注意力机制计算实体描述信息嵌入与三元组关系嵌入之间的注意力权重,从而增强实体的语义信息;最后,将关系路径信息嵌入、实体描述信息嵌入和三元组结构嵌入融合起来进行训练。为评估模型性能,在公开数据集上针对所提模型和基准模型进行链接预测和三元组分类的实验。结果表明:在链接预测任务中,与融合关系路径与实体描述信息的知识图谱表示学习方法(PDRL)、多跳关系路径模型Att-ConvBiLSTM以及融合实体描述与关系路径信息的知识图谱嵌入模型TPKGE相比,所提模型在FB15k-237数据集上的Hit@10指标分别提高了5.7、2.9、2.5个百分点;在三元组分类任务上,所提模型在FB15k-237和WN18RR数据集上的准确率较最优基准模型PDRL分别提升了2.81和0.90个百分点。
文摘传统KNN查询是一种稳定性和准确率性能均较好的算法,但是在样本规模过大时,算法的计算效率受到影响较大,对此提出一种基于聚类中心文本串联的并行(Mapreduce for KNN,MKNN)文本分类算法。首先,基于文本聚类方式,对相似度较高的文档进行串联合并,并以合并文档取代原有独立文档进行KNN查询过程,可有效实现文本相似度指标计算量降维;其次,针对上述文本串联及KNN查询过程,构建基于Mapreduce算法的并行化KNN执行过程,实现算法计算效率的快速提升;最后,通过与同类单线程算法在文本分类精度和算法计算效率实验上对比显示,在保证足够精度前提下,所提算法分类速度可得到有效提升。
文摘云计算业务平台的广泛应用强化了研究人员对于移动设备的依赖性。员工携带自己的设备(bring your own devices,BYOD)已经成为当前移动办公的主要趋势。针对BYOD环境中的数据泄露和恶意代码等问题,提出了一种跨平台的安全解决方案。该方案应用无客户端网络准入控制方式获取终端属性,并在向量表示法的基础上,为CPU空闲率等特殊属性设计了一种动态数值型评估方式。因此,该方案能够对进入网络的移动智能终端进行准确的可信评估,将终端分别判入可信域、非可信域和隔离域,确保最终进入网络的BYOD设备处于可信状态,以实现网络入口边界安全。实验结果表明,该方案比现有方案在移动智能终端安全状态的评估和防止对数据的非法访问等方面具有更好的效果。