期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于增量约简算法确定电力负荷预测模型输入参数
被引量:
13
1
作者
张晓星
周湶
+2 位作者
任海军
孙才新
程其云
《电力系统自动化》
EI
CSCD
北大核心
2005年第13期40-44,共5页
针对电力系统中有众多因素影响负荷预测精度的问题,文中引入粗糙集理论中的属性约简算法来挖掘与待预测量相关性大的各属性,保证预测模型输入参数的合理性,解决了神经网络模型输入参数的确定问题。针对基于区分矩阵约简算法是NP问题的弱...
针对电力系统中有众多因素影响负荷预测精度的问题,文中引入粗糙集理论中的属性约简算法来挖掘与待预测量相关性大的各属性,保证预测模型输入参数的合理性,解决了神经网络模型输入参数的确定问题。针对基于区分矩阵约简算法是NP问题的弱点,提出了基于属性优先级函数的启发式约简算法(RAPHF);针对负荷预测过程中样本数据是滚动更新的特点,在RAPHF的基础上提出了具有动态挖掘能力的粗糙集增量算法RAPHF-I。通过短期负荷预测的实例研究,证实了文中改进算法的有效性。
展开更多
关键词
负荷预测
粗糙集
属性约简
增量算法
神经网络
在线阅读
下载PDF
职称材料
题名
基于增量约简算法确定电力负荷预测模型输入参数
被引量:
13
1
作者
张晓星
周湶
任海军
孙才新
程其云
机构
重庆大学高电压与电工新技术教育部重点实验室
贵州省电网公司贵阳市南供电局
出处
《电力系统自动化》
EI
CSCD
北大核心
2005年第13期40-44,共5页
文摘
针对电力系统中有众多因素影响负荷预测精度的问题,文中引入粗糙集理论中的属性约简算法来挖掘与待预测量相关性大的各属性,保证预测模型输入参数的合理性,解决了神经网络模型输入参数的确定问题。针对基于区分矩阵约简算法是NP问题的弱点,提出了基于属性优先级函数的启发式约简算法(RAPHF);针对负荷预测过程中样本数据是滚动更新的特点,在RAPHF的基础上提出了具有动态挖掘能力的粗糙集增量算法RAPHF-I。通过短期负荷预测的实例研究,证实了文中改进算法的有效性。
关键词
负荷预测
粗糙集
属性约简
增量算法
神经网络
Keywords
Electric network parameters
Heuristic methods
Mathematical models
Neural networks
Rough set theory
分类号
TM714 [电气工程—电力系统及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于增量约简算法确定电力负荷预测模型输入参数
张晓星
周湶
任海军
孙才新
程其云
《电力系统自动化》
EI
CSCD
北大核心
2005
13
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部