期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于VMD-KLD的桥梁挠度监测数据温度效应分离方法
被引量:
12
1
作者
李双江
辛景舟
+3 位作者
付雷
唐启智
赵月明
周建庭
《振动与冲击》
EI
CSCD
北大核心
2022年第5期105-113,共9页
传统经验模态分解(empirical mode decomposition, EMD)方法在处理桥梁挠度信号时存在模态混叠、分解误差累积等问题,致使分解结果尚不理想。为此,提出了一种结合变分模态分解(variational mode decomposition, VMD)和K-L散度(Kullback-...
传统经验模态分解(empirical mode decomposition, EMD)方法在处理桥梁挠度信号时存在模态混叠、分解误差累积等问题,致使分解结果尚不理想。为此,提出了一种结合变分模态分解(variational mode decomposition, VMD)和K-L散度(Kullback-Leibler divergence, KLD)的桥梁挠度监测数据温度效应分离方法。利用VMD分解桥梁挠度信号,获得若干个本征模态函数(intrinsic mode function, IMF);借助核密度估计求得各IMF分量的概率密度函数分布,进而得到各分量KLD值,剔除虚假IMF分量,选定最佳分量;运用Pearson相关系数对最佳分量进行效果评价;通过数值仿真算例与实桥监测数据,验证了该方法的有效性。结果表明:该方法融合了VMD自适应、抗噪能力强和KLD快速选取最优信号的优势,克服了传统EMD模态混叠等缺陷,减少了虚假分量的干扰,将两者结合使得分解及筛选特征信号分量高效可靠,温度效应分离效果良好;仿真信号经VMD-KLD分析得到日、年温差效应及长期挠度相关系数分别为0.994 6、0.983 7和0.970 4,实测信号得到的日、年温差效应相关系数分别为0.908 1、0.936 4;同EMD-KLD相比,VMD-KLD分离出的各挠度成分相关系数更接近于1,仿真信号分析中日、年温差效应及长期挠度分别提升了4.43%、10.84%和8.81%,实测信号分析中日、年温差效应分别提升了12.35%、5.57%。该方法可为桥梁挠度监测数据温度效应在线分离提供一种新的思路。
展开更多
关键词
温度效应
变分模态分解(VMD)
K-L散度(KLD)
桥梁挠度分离
健康监测
在线阅读
下载PDF
职称材料
题名
基于VMD-KLD的桥梁挠度监测数据温度效应分离方法
被引量:
12
1
作者
李双江
辛景舟
付雷
唐启智
赵月明
周建庭
机构
重庆交通大学省部共建山区桥梁及隧道工程国家重点实验室
广西交通投资集团
有限
公司
贵州
桥梁建设集团
有限责任公司
贵州毕节高速发展有限责任公司
出处
《振动与冲击》
EI
CSCD
北大核心
2022年第5期105-113,共9页
基金
国家自然科学基金(51978111,51908094)
重庆市自然科学基金创新群体科学基金(cstc2019jcyj-cxttX0004)
+1 种基金
贵州省科技支撑计划(黔科合支撑[2018]2154)
重庆交通大学研究生科研创新项目(2021B0001)。
文摘
传统经验模态分解(empirical mode decomposition, EMD)方法在处理桥梁挠度信号时存在模态混叠、分解误差累积等问题,致使分解结果尚不理想。为此,提出了一种结合变分模态分解(variational mode decomposition, VMD)和K-L散度(Kullback-Leibler divergence, KLD)的桥梁挠度监测数据温度效应分离方法。利用VMD分解桥梁挠度信号,获得若干个本征模态函数(intrinsic mode function, IMF);借助核密度估计求得各IMF分量的概率密度函数分布,进而得到各分量KLD值,剔除虚假IMF分量,选定最佳分量;运用Pearson相关系数对最佳分量进行效果评价;通过数值仿真算例与实桥监测数据,验证了该方法的有效性。结果表明:该方法融合了VMD自适应、抗噪能力强和KLD快速选取最优信号的优势,克服了传统EMD模态混叠等缺陷,减少了虚假分量的干扰,将两者结合使得分解及筛选特征信号分量高效可靠,温度效应分离效果良好;仿真信号经VMD-KLD分析得到日、年温差效应及长期挠度相关系数分别为0.994 6、0.983 7和0.970 4,实测信号得到的日、年温差效应相关系数分别为0.908 1、0.936 4;同EMD-KLD相比,VMD-KLD分离出的各挠度成分相关系数更接近于1,仿真信号分析中日、年温差效应及长期挠度分别提升了4.43%、10.84%和8.81%,实测信号分析中日、年温差效应分别提升了12.35%、5.57%。该方法可为桥梁挠度监测数据温度效应在线分离提供一种新的思路。
关键词
温度效应
变分模态分解(VMD)
K-L散度(KLD)
桥梁挠度分离
健康监测
Keywords
temperature effect
variational modal decomposition(VMD)
Kullback-Leibler divergence(KLD)
bridge deflection separation
health monitoring
分类号
U441 [建筑科学—桥梁与隧道工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于VMD-KLD的桥梁挠度监测数据温度效应分离方法
李双江
辛景舟
付雷
唐启智
赵月明
周建庭
《振动与冲击》
EI
CSCD
北大核心
2022
12
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部