The emission of anomalous X-ray pulsars(AXPs)and soft gamma-ray repeaters(SGRs)is believed to be powered by the dissipation of their strong magnetic fields,which coined the name“magnetar”.By combining timing and ene...The emission of anomalous X-ray pulsars(AXPs)and soft gamma-ray repeaters(SGRs)is believed to be powered by the dissipation of their strong magnetic fields,which coined the name“magnetar”.By combining timing and energy observational results,the magnetar model can be easily appreciated.From a timing perspective,the magnetic field strengths of AXPs and SGRs,which are calculated under the assumption of dipole radiation,are extremely strong.From an energy perspective,the X-ray/soft gamma-ray luminosities of AXPs and SGRs are larger than their rotational energy loss rates(i.e.,L_(x>E_(rot)).It is thus reasonable to assume that the high-energy radiation comes from magnetic energy decay,and the magnetar model has been extensively discussed(or accepted).However,we argue that:(ⅰ)Calculating magnetic fields by assuming that rotational energy loss is dominated by dipole radiation(i.e.,E_(rot)■E_(μ))may be controversial,and we suggest that the energies carried by outflowing particles should also be considered.(ⅱ)The fact that X-ray luminosity is greater than the rotational energy loss rate does not necessarily mean that the emission energy comes from the magnetic field decaying,which requires further observational testing.Furthermore,some observational facts conflict with the“magnetar”model,such as observations of anti-magnetars,high magnetic field pulsars,and radio and X-ray observations of AXPs/SGRs.Therefore,we propose a crusted strange star model as an alternative,which can explain many more observational facts of AXPs/SGRs.展开更多
基金supported by the National Natural Science Foundation of China(12273008,12025303,12403046)the National SKA Program of China(2022SKA0130104)+3 种基金the Natural Science and Technology Foundation of Guizhou Province(QiankehejichuMS[2025]266,[2023]024,ZK[2022]304)the Foundation of Guizhou Provincial Education Department(KY(2020)003)the Academic New Seedling Fund Project of Guizhou Normal University([2022]B18)the Major Science and Technology Program of Xinjiang Uygur Autonomous Region(2022A03013-4).
文摘The emission of anomalous X-ray pulsars(AXPs)and soft gamma-ray repeaters(SGRs)is believed to be powered by the dissipation of their strong magnetic fields,which coined the name“magnetar”.By combining timing and energy observational results,the magnetar model can be easily appreciated.From a timing perspective,the magnetic field strengths of AXPs and SGRs,which are calculated under the assumption of dipole radiation,are extremely strong.From an energy perspective,the X-ray/soft gamma-ray luminosities of AXPs and SGRs are larger than their rotational energy loss rates(i.e.,L_(x>E_(rot)).It is thus reasonable to assume that the high-energy radiation comes from magnetic energy decay,and the magnetar model has been extensively discussed(or accepted).However,we argue that:(ⅰ)Calculating magnetic fields by assuming that rotational energy loss is dominated by dipole radiation(i.e.,E_(rot)■E_(μ))may be controversial,and we suggest that the energies carried by outflowing particles should also be considered.(ⅱ)The fact that X-ray luminosity is greater than the rotational energy loss rate does not necessarily mean that the emission energy comes from the magnetic field decaying,which requires further observational testing.Furthermore,some observational facts conflict with the“magnetar”model,such as observations of anti-magnetars,high magnetic field pulsars,and radio and X-ray observations of AXPs/SGRs.Therefore,we propose a crusted strange star model as an alternative,which can explain many more observational facts of AXPs/SGRs.