期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
GA-BP神经网络模型在流域面雨量预报的应用研究 被引量:13
1
作者 谷晓平 王长耀 袁淑杰 《热带气象学报》 CSCD 北大核心 2006年第3期248-252,共5页
通过采用遗传算法优化网络初始权重的方法,将遗传算法(GA)和前馈误差反传播(BP)算法有机地结合,优势互补,并应用于流域面雨量预报。以广东省东北部的滨江流域为试验区域,以1995~2001年气象探空资料为基础,利用最优子集回归技术进行预... 通过采用遗传算法优化网络初始权重的方法,将遗传算法(GA)和前馈误差反传播(BP)算法有机地结合,优势互补,并应用于流域面雨量预报。以广东省东北部的滨江流域为试验区域,以1995~2001年气象探空资料为基础,利用最优子集回归技术进行预报因子筛选,建立了流域面雨量预报的GA-BP神经网络模型,取得了满意的结果。试验表明:(1)6小时流域面雨量预报神经网络的优化结构是7-7-1,转移函数的组合方式为tansig-线性函数。(2)训练算法为Levenberg-Marquardt算法(LM)。(3)遗传算法具有快速学习网络权重的能力,对BP网络易陷于局部极小点。(4)利用GA-BP神经网络模型对未来6小时流域面雨量的预报精度明显高于其它统计方法,证明了这种方法的有效性和可靠性。 展开更多
关键词 神经网络 遗传算法 最优子集 雨量预报
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部