期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于粒子群优化BP神经网络的步态相位识别
1
作者 代金隧 何志琴 +3 位作者 马家庆 吴钦木 刘洪举 李永杰 《传感器与微系统》 北大核心 2025年第10期78-81,共4页
为了解决传统的反向传播(BP)神经网络在步态相位识别中易陷入局部最优解的问题,并增强BP神经网络在步态相位识别的准确性和高效性,提出了一种基于粒子群优化(PSO)的BP神经网络识别算法。该算法以经过滤波、特征提取以及基于步态相位划... 为了解决传统的反向传播(BP)神经网络在步态相位识别中易陷入局部最优解的问题,并增强BP神经网络在步态相位识别的准确性和高效性,提出了一种基于粒子群优化(PSO)的BP神经网络识别算法。该算法以经过滤波、特征提取以及基于步态相位划分准则分割后的数据作为输入,通过不断迭代更新粒子的速度和位置,来优化BP神经网络的权重和阈值。基于优化后的BP神经网络对输入数据进行训练,导出训练好的模型参数,并将其嵌入到外骨骼样机中进行实时步态相位识别测试。结果显示,该模型具有良好的实时性和高准确率,能够准确地识别步态相位。 展开更多
关键词 粒子群优化算法 反向传播神经网络 步态相位 外骨骼样机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部