Attackers inject the designed adversarial sample into the target recommendation system to achieve illegal goals,seriously affecting the security and reliability of the recommendation system.It is difficult for attacke...Attackers inject the designed adversarial sample into the target recommendation system to achieve illegal goals,seriously affecting the security and reliability of the recommendation system.It is difficult for attackers to obtain detailed knowledge of the target model in actual scenarios,so using gradient optimization to generate adversarial samples in the local surrogate model has become an effective black‐box attack strategy.However,these methods suffer from gradients falling into local minima,limiting the transferability of the adversarial samples.This reduces the attack's effectiveness and often ignores the imperceptibility of the generated adversarial samples.To address these challenges,we propose a novel attack algorithm called PGMRS‐KL that combines pre‐gradient‐guided momentum gradient optimization strategy and fake user generation constrained by Kullback‐Leibler divergence.Specifically,the algorithm combines the accumulated gradient direction with the previous step's gradient direction to iteratively update the adversarial samples.It uses KL loss to minimize the distribution distance between fake and real user data,achieving high transferability and imperceptibility of the adversarial samples.Experimental results demonstrate the superiority of our approach over state‐of‐the‐art gradient‐based attack algorithms in terms of attack transferability and the generation of imperceptible fake user data.展开更多
基金The National Natural Science Foundation of China (61876001)Opening Foundation of State Key Laboratory of Cognitive Intelligence,Opening Foundation of State Key Laboratory of Cognitive Intelligence(iED2022-006)Scientific Research Planning Project of Anhui Province (2022AH050072)
文摘Attackers inject the designed adversarial sample into the target recommendation system to achieve illegal goals,seriously affecting the security and reliability of the recommendation system.It is difficult for attackers to obtain detailed knowledge of the target model in actual scenarios,so using gradient optimization to generate adversarial samples in the local surrogate model has become an effective black‐box attack strategy.However,these methods suffer from gradients falling into local minima,limiting the transferability of the adversarial samples.This reduces the attack's effectiveness and often ignores the imperceptibility of the generated adversarial samples.To address these challenges,we propose a novel attack algorithm called PGMRS‐KL that combines pre‐gradient‐guided momentum gradient optimization strategy and fake user generation constrained by Kullback‐Leibler divergence.Specifically,the algorithm combines the accumulated gradient direction with the previous step's gradient direction to iteratively update the adversarial samples.It uses KL loss to minimize the distribution distance between fake and real user data,achieving high transferability and imperceptibility of the adversarial samples.Experimental results demonstrate the superiority of our approach over state‐of‐the‐art gradient‐based attack algorithms in terms of attack transferability and the generation of imperceptible fake user data.
文摘可分离压缩传感可以通过一定比例的额外测量有效地解决压缩成像问题中面临的测量矩阵维数过大的瓶颈.但是现有可分离压缩传感(separable compressive sensing,SCS)方法需要2个可分离的测量矩阵都必须是行归一化后的正交随机矩阵,其显著地限制了该方法的应用范围.将奇异值分解(singular value decomposition,SVD)方法引入可分离可压缩传感测量过程,可以有效地实现测量矩阵和重建矩阵的分离:在感知阶段可以更多地考虑测量矩阵物理易于实现的性质,如Toeplitz或Circulant等确定性结构的矩阵;在重建阶段,更多地考虑测量矩阵的优化.通过引入奇异值分解对重建阶段的测量矩阵进行优化,可以有效地改善重建性能,尤其是Toeplitz或Circulant矩阵在大尺度图像的压缩重建情形.数值实验结果验证了该方法的有效性.