期刊文献+
共找到114篇文章
< 1 2 6 >
每页显示 20 50 100
融合高阶组结构信息的节点分类算法
1
作者 郑文萍 韩艺恒 刘美麟 《计算机科学》 北大核心 2025年第2期107-115,共9页
节点的局部邻域内通常存在具有特定局部连接模式且频繁出现的高阶组结构,这些组结构可以更准确地刻画节点拓扑特征,有助于理解网络的结构特征及节点间的交互模式。基于此,利用节点局部邻域内的高阶组结构特征计算节点间的结构相似性,并... 节点的局部邻域内通常存在具有特定局部连接模式且频繁出现的高阶组结构,这些组结构可以更准确地刻画节点拓扑特征,有助于理解网络的结构特征及节点间的交互模式。基于此,利用节点局部邻域内的高阶组结构特征计算节点间的结构相似性,并提出了一种融合高阶组结构信息的节点分类算法NHGS(Node Classification Algorithm Fusing High-order Group Structure Information)。该算法将k元组内形成的不同构的导出子图作为其初始组标签,利用Weisfeiler-Lehman(WL)算法迭代地聚合其邻域k元组的标签信息以更新k元组标签;节点在不同k元组标签中的出现次数构成了节点的特征向量,利用节点间特征向量的相似性表示节点间的结构相似性;结合节点的属性信息,并通过自编码器神经网络得到节点嵌入,进而对网络中的节点进行分类。NHGS将节点局部邻域内的k元节点组结构信息与节点的属性信息相结合,得到了包含高阶结构信息的节点表示。在真实属性网络上的实验表明,所提方法能有效计算出节点间的结构相似性,提升了节点分类任务的性能。 展开更多
关键词 节点分类 高阶结构 结构相似性 网络表示 图神经网络
在线阅读 下载PDF
基于混合特征提取的流数据概念漂移处理方法 被引量:1
2
作者 郭虎升 刘艳杰 王文剑 《计算机研究与发展》 EI CSCD 北大核心 2024年第6期1497-1510,共14页
大数据时代,越来越多的数据以数据流的形式产生,由于其具有快速、无限、不稳定及动态变化等特性,使得概念漂移成为流数据挖掘中一个重要但困难的问题.目前多数概念漂移处理方法存在信息提取能力有限且未充分考虑流数据的时序特性等问题... 大数据时代,越来越多的数据以数据流的形式产生,由于其具有快速、无限、不稳定及动态变化等特性,使得概念漂移成为流数据挖掘中一个重要但困难的问题.目前多数概念漂移处理方法存在信息提取能力有限且未充分考虑流数据的时序特性等问题.针对这些问题,提出一种基于混合特征提取的流数据概念漂移处理方法(concept drift processing method of streaming data based on mixed feature extraction,MFECD).该方法首先采用不同尺度的卷积核对数据进行建模以构建拼接特征,采用门控机制将浅层输入和拼接特征融合,作为不同网络层次输入进行自适应集成,以获得能够兼顾细节信息和语义信息的数据特性.在此基础上,采用注意力机制和相似度计算评估流数据不同时刻的重要性,以增强数据流关键位点的时序特性.实验结果表明,该方法能有效提取流数据中包含的复杂数据特征和时序特征,提高了数据流中概念漂移的处理能力. 展开更多
关键词 流数据 概念漂移 特征融合 注意力机制 样本特征 时序特征
在线阅读 下载PDF
融入模体信息的多层网络社区发现算法
3
作者 赵兴旺 张超 梁吉业 《南京大学学报(自然科学版)》 CSCD 北大核心 2024年第6期954-969,共16页
多层网络社区发现算法旨在揭示复杂网络中蕴含的社区结构,近年来得到了广泛关注,然而现有算法在度量节点相似度的过程中往往只关注网络中的低阶结构信息,忽略了高阶结构信息,而且,在对不同层网络进行融合的过程中也没有考虑不同层之间... 多层网络社区发现算法旨在揭示复杂网络中蕴含的社区结构,近年来得到了广泛关注,然而现有算法在度量节点相似度的过程中往往只关注网络中的低阶结构信息,忽略了高阶结构信息,而且,在对不同层网络进行融合的过程中也没有考虑不同层之间的差异性.针对以上问题,提出一种融入模体信息的多层网络社区发现算法.首先,各层分别计算融入模体的高阶邻接矩阵,通过与低阶邻接矩阵融合得到重构矩阵,进而基于邻居重要性对重构矩阵进行提升,得到节点相似度矩阵;其次,基于重构矩阵计算各层网络的重要性,再加权融合得到统一的相似度矩阵;最后,基于统一的相似度矩阵得到节点的影响力,通过节点嵌入表示方法,对节点的向量表示进行迭代更新,得到节点的最终嵌入表示.与已有的传统多层网络社区发现算法进行了对比实验,结果表明,提出的算法的多层模块度和标准化互信息等评价指标均优于已有算法. 展开更多
关键词 多层网络 社区发现 高阶信息 节点相似度 嵌入表示
在线阅读 下载PDF
融合二连通模体结构信息的节点分类算法
4
作者 郑文萍 葛慧琳 +1 位作者 刘美麟 杨贵 《计算机应用》 CSCD 北大核心 2024年第5期1464-1470,共7页
节点表示学习将图结构数据信息编码到低维的潜在空间中,在节点分类、聚类、链路预测等机器学习任务中被广泛应用。在复杂网络中,节点与节点之间不仅存在直接相连的低阶结构,也存在以特殊连接模式形成的高阶结构,称为模体。提出一种融合... 节点表示学习将图结构数据信息编码到低维的潜在空间中,在节点分类、聚类、链路预测等机器学习任务中被广泛应用。在复杂网络中,节点与节点之间不仅存在直接相连的低阶结构,也存在以特殊连接模式形成的高阶结构,称为模体。提出一种融合二连通模体结构信息的节点分类算法(FMI),利用节点间高阶二连通模体信息学习节点表示,完成节点分类任务。首先,统计网络中的二连通模体,利用其中信息提出一个节点重要性的度量指标——模体比值。根据模体比值计算采样概率进行邻域采样;构造一个带权辅助图以融合网络节点连接的低阶关系与高阶关系,对节点进行加权邻域聚合以得到节点表示。在5个数据集Cora、Citeseer、Pubmed、Wiki和DBLP上执行节点分类任务,与5种经典基准算法进行对比,所提算法FMI在准确度和F1-分数等指标上表现良好。 展开更多
关键词 节点表示 二连通模体 邻域采样 邻域聚合 节点分类
在线阅读 下载PDF
弹性梯度集成的概念漂移适应
5
作者 郭虎升 张羽桐 王文剑 《计算机研究与发展》 北大核心 2025年第5期1235-1247,共13页
随着流数据的大量涌现,概念漂移已成为流数据挖掘中备受关注且具有挑战性的重要问题.目前,多数集成学习方法未针对性地识别概念漂移类型,并采取高效的集成适应策略,导致模型在不同漂移类型上的性能参差不齐.为此,提出了一种弹性梯度集... 随着流数据的大量涌现,概念漂移已成为流数据挖掘中备受关注且具有挑战性的重要问题.目前,多数集成学习方法未针对性地识别概念漂移类型,并采取高效的集成适应策略,导致模型在不同漂移类型上的性能参差不齐.为此,提出了一种弹性梯度集成的概念漂移适应(elastic gradient ensemble for concept drift adaptation,EGE_CD)方法.该方法首先通过提取梯度提升残差,计算流动残差比检测漂移位点,之后计算残差波动率识别漂移类型;然后,利用学习器损失变化提取漂移学习器,结合不同漂移类型与残差分布特征删除对应学习器,实现弹性梯度剪枝;最后,将增量学习与滑动采样方法结合,通过计算最优拟合率优化学习器拟合过程,再根据残差变化实现增量梯度生长.实验结果表明,所提方法提高了模型对不同漂移类型的稳定性与适应性,取得了良好的泛化性能. 展开更多
关键词 概念漂移 漂移类型 梯度提升 漂移检测 弹性梯度剪枝 增量梯度生长
在线阅读 下载PDF
随时间持续演化的流图神经网络
6
作者 郭虎升 张旭飞 +1 位作者 孙玉杰 王文剑 《计算机科学》 北大核心 2025年第8期118-126,共9页
流图在现实应用中广泛存在,其节点特征和结构特征会随时间推移而动态变化。尽管图神经网络在静态图节点分类中表现卓越,但其难以直接应用于流图,流图的持续演化会导致信息滞后和遗漏问题,所以模型难以准确提取流图特征。针对上述挑战,... 流图在现实应用中广泛存在,其节点特征和结构特征会随时间推移而动态变化。尽管图神经网络在静态图节点分类中表现卓越,但其难以直接应用于流图,流图的持续演化会导致信息滞后和遗漏问题,所以模型难以准确提取流图特征。针对上述挑战,提出了一种随时间持续演化的流图神经网络(Continuously Evolution Streaming Graph Neural Network,CESGNN),以解决流图节点分类问题。该方法首先通过持续更新的图卷积网络(Continuous Updates Graph Convolutional Network,CU-GCN)增量地更新参数,以适应流图节点特征的变化,缓解信息滞后问题,然后自适应扩展的图神经网络(Adaptive Deepening Graph Neural Network,AD-GNN)通过将聚合和更新操作解耦,以挖掘流图深层特征,从而缓解信息遗漏问题。CESGNN通过有机地融合原始特征、CU-GCN提取的浅层特征和AD-GNN提取的深层特征,获得更准确、全面的流图特征表示。实验结果表明,CESGNN模型对流图具有良好的适应性和稳定性,提高了流图节点分类的准确率。 展开更多
关键词 流图 图神经网络 增量更新 聚合与更新解耦 特征融合
在线阅读 下载PDF
时空特征强化与感知的视觉目标跟踪方法
7
作者 郭虎升 刘正琪 +1 位作者 刘艳杰 王文剑 《陕西师范大学学报(自然科学版)》 北大核心 2025年第1期60-70,共11页
多数基于Transformer的目标跟踪模型提取的目标局部空间特征信息有限且时间特征利用不足,显著影响了目标跟踪模型在处理目标遮挡、形变或尺度变化等复杂场景下的性能。为此,提出一种时空特征强化与感知的视觉目标跟踪方法(visual object... 多数基于Transformer的目标跟踪模型提取的目标局部空间特征信息有限且时间特征利用不足,显著影响了目标跟踪模型在处理目标遮挡、形变或尺度变化等复杂场景下的性能。为此,提出一种时空特征强化与感知的视觉目标跟踪方法(visual object tracking method with spatial-temporal feature enhancement and perception,STFEP)。一方面,该方法使用Transformer进行搜索区域与时间上下文特征的提取与融合,以得到全局特征信息,通过设计的局部卷积神经网络,提取目标的局部特征信息,并与目标的全局特征信息相关联,进一步强化目标的特征表示。另一方面,提出了时空特征感知机制,对不同时刻的特征信息进行可靠性和必要性分析,构建动态模板以感知更丰富的时空信息,使模型适应目标及场景的复杂变化。在TrackingNet、GOT-10k、LaSOT、UAV123多个数据集上的实验结果表明,研究所提方法能够准确鲁棒的对目标进行跟踪,并在GOT-10k数据集上取得了最优的结果,AO、SR 0.5以及SR 0.75分别达到了73.7%、83.8%、70.6%。 展开更多
关键词 视觉目标跟踪 时空特征强化 全局-局部信息关联 时空特征感知 动态模板
在线阅读 下载PDF
基于特征融合的部分有序深度森林模型
8
作者 许行 温萧轲 王文剑 《计算机工程与应用》 北大核心 2025年第7期165-175,共11页
部分有序数据是同时包含有序特征与无序特征的一类数据,其广泛存在于现实生活中。传统的有序分类方法或者将所有特征都视为有序特征,或者对有序与无序特征分别进行处理,忽略了二者之间的关系,这些方法难以有效解决部分有序数据上的分类... 部分有序数据是同时包含有序特征与无序特征的一类数据,其广泛存在于现实生活中。传统的有序分类方法或者将所有特征都视为有序特征,或者对有序与无序特征分别进行处理,忽略了二者之间的关系,这些方法难以有效解决部分有序数据上的分类问题。针对该问题,提出一种基于特征融合的部分有序深度森林模型,称为FFDF(feature fusion-based deep forest)。利用典型相关分析的思想,设计特征融合的贡献度计算方法,将有序特征和无序特征融合到同一特征空间,统一度量二者之间的关系。对融合的特征空间进行数据粒化,降低模型处理连续变量时的复杂性。设计融合空间下的特征矩阵输入级联森林,构建部分有序的深度森林模型。在来自UCI和WEKA的13个公共数据集上与部分单调决策树、有序分类模型、深度森林模型等六种方法进行比较实验,结果表明所提方法在准确性和平均绝对误差方面均优于对比方法;与集成模型深度森林gcForest和DF21进行了时间性能上的对比实验,结果表明所提方法在时间性能上优于对比方法。 展开更多
关键词 有序分类 部分有序数据 特征融合 深度森林 典型相关分析
在线阅读 下载PDF
基于路径感知邻域的节点分类算法
9
作者 郑文萍 王晓敏 韩兆荣 《数据采集与处理》 北大核心 2025年第1期134-146,共13页
图卷积神经网络通过将相似性高的邻居节点信息进行聚合以得到节点表示,为节点选择合适邻域并进行有效聚合是图卷积网络的关键。现有的图卷积神经网络大多直接将多跳邻域内的节点信息聚合,没有考虑到不同跳数邻域的聚合权重对网络中不同... 图卷积神经网络通过将相似性高的邻居节点信息进行聚合以得到节点表示,为节点选择合适邻域并进行有效聚合是图卷积网络的关键。现有的图卷积神经网络大多直接将多跳邻域内的节点信息聚合,没有考虑到不同跳数邻域的聚合权重对网络中不同节点的差异性。针对此,提出了一种基于路径感知邻域的节点分类算法(Path connectivity based neighbor-awareness node classification algorithm,PCNA),通过网络中的路径连通信息确定节点邻域,并自适应地感知不同长度路径对节点间相似性计算的影响权重,指导图卷积神经网络的邻域聚合过程。PCNA由邻域感知器和节点分类器组成,邻域感知器基于强化学习机制自适应地获取每个节点的聚合邻域及不同长度路径的影响权重,再利用节点间的路径连通信息得到相似性矩阵;节点分类器利用所得相似性矩阵进行邻域聚合得到节点表示,并进行节点分类。在8个真实数据集上与10种经典算法的对比实验表明了所提算法在节点分类任务上有较好的性能。 展开更多
关键词 图卷积神经网络 邻域聚合 强化学习 节点相似性 节点分类
在线阅读 下载PDF
基于框架语义分析的汉语句子相似度计算 被引量:47
10
作者 李茹 王智强 +2 位作者 李双红 梁吉业 Collin Baker 《计算机研究与发展》 EI CSCD 北大核心 2013年第8期1728-1736,共9页
句子相似度计算在自然语言处理的许多领域中发挥着重要作用.已有的汉语句子相似度计算方法由于考虑句子的语义不全面,使得相似度计算结果不够准确,为此提出一种新的汉语句子相似度计算方法.该方法基于汉语框架网语义资源,通过多框架语... 句子相似度计算在自然语言处理的许多领域中发挥着重要作用.已有的汉语句子相似度计算方法由于考虑句子的语义不全面,使得相似度计算结果不够准确,为此提出一种新的汉语句子相似度计算方法.该方法基于汉语框架网语义资源,通过多框架语义分析、框架的重要度度量、框架的相似匹配、框架间相似度计算等关键步骤来实现句子语义的相似度量.其中多框架语义分析是从框架角度对句子中的所有目标词进行识别、框架选择及框架元素标注,从而达到全面刻画句子语义的目的;在此基础上根据句子中框架的语义覆盖范围对不同框架的重要度进行区分,能够使得相似度结果更准确.在包含多目标词的句子集上的实验结果显示,基于多框架语义分析的句子相似度计算方法相对传统方法获得了更好的测试结果. 展开更多
关键词 汉语框架网 多框架语义分析 句子语义相似度 框架相似度 框架重要度
在线阅读 下载PDF
基于信息融合的概率矩阵分解链路预测方法 被引量:12
11
作者 王智强 梁吉业 李茹 《计算机研究与发展》 EI CSCD 北大核心 2019年第2期306-318,共13页
作为一种典型的网络大数据,社交信息网络如微博、Tweeter等,不仅包含用户间复杂的网络结构,而且包含大量用户所发表的微博/Tweet信息.现有链路预测算法大多只利用单方面的网络拓扑信息或非拓扑信息,仍然缺乏有效融合社交信息网络中拓扑... 作为一种典型的网络大数据,社交信息网络如微博、Tweeter等,不仅包含用户间复杂的网络结构,而且包含大量用户所发表的微博/Tweet信息.现有链路预测算法大多只利用单方面的网络拓扑信息或非拓扑信息,仍然缺乏有效融合社交信息网络中拓扑与非拓扑信息的链路预测方法.为此,从社交信息网络中用户的主题角度出发,提出一种融合主题相似信息的链路预测方法.首先基于用户文本内容抽取用户的主题表示,并定义用户间的主题相似度;然后基于用户主题相似度,构建了一种用户主题相似稀疏网络;进一步将用户主题相似网络与用户间关注/被关注网络融合在统一的概率矩阵分解框架下,通过学习获得用户的潜在特征表示和网络链路参数;最终在此概率矩阵分解框架下,基于用户的潜在特征表示和链路参数计算得到用户间的链路可能性.所提出的模型提供了一种融合多种网络信息的通用策略和学习方法.实验在包含网络结构与文本信息的4组微博与推特数据集中显示,所提出的融合概率矩阵分解链路方法相比其他链路预测方法更有效. 展开更多
关键词 社交信息网络 链路预测 概率矩阵分解 融合模型 网络数据分析
在线阅读 下载PDF
一种基于信息熵的混合数据属性加权聚类算法 被引量:44
12
作者 赵兴旺 梁吉业 《计算机研究与发展》 EI CSCD 北大核心 2016年第5期1018-1028,共11页
同时兼具数值型和分类型属性的混合数据在实际应用中普通存在,混合数据的聚类分析越来越受到广泛的关注.为解决高维混合数据聚类中属性加权问题,提出了一种基于信息熵的混合数据属性加权聚类算法,以提升模式发现的效果.工作主要包括:首... 同时兼具数值型和分类型属性的混合数据在实际应用中普通存在,混合数据的聚类分析越来越受到广泛的关注.为解决高维混合数据聚类中属性加权问题,提出了一种基于信息熵的混合数据属性加权聚类算法,以提升模式发现的效果.工作主要包括:首先为了更加准确客观地度量对象与类之间的差异性,设计了针对混合数据的扩展欧氏距离;然后,在信息熵框架下利用类内信息熵和类间信息熵给出了聚类结果中类内抱团性及一个类与其余类分离度的统一度量机制,并基于此给出了一种属性重要性度量方法,进而设计了一种基于信息熵的属性加权混合数据聚类算法.在10个UCI数据集上的实验结果表明,提出的算法在4种聚类评价指标下优于传统的属性未加权聚类算法和已有的属性加权聚类算法,并通过统计显著性检验表明本文提出算法的聚类结果与已有算法聚类结果具有显著差异性. 展开更多
关键词 聚类分析 混合数据 属性加权 信息熵 相异性度量
在线阅读 下载PDF
基于Cai-伪残差与变量独立性的因果定向方法
13
作者 牛瑞琪 原泽鹏 +2 位作者 翟岩慧 赵延新 李德玉 《郑州大学学报(理学版)》 北大核心 2025年第6期24-33,共10页
针对基于约束的因果关系发现方法中的马尔科夫等价类问题及函数因果模型对噪声的非高斯性假设问题,使用Cai-伪残差的三个定理,提出了Cai-伪残差因果定向算法。首先,假设变量之间关系线性且不限制噪声类型,在此条件下,对于贝叶斯网络的... 针对基于约束的因果关系发现方法中的马尔科夫等价类问题及函数因果模型对噪声的非高斯性假设问题,使用Cai-伪残差的三个定理,提出了Cai-伪残差因果定向算法。首先,假设变量之间关系线性且不限制噪声类型,在此条件下,对于贝叶斯网络的三种结构,Cai-伪残差与变量间的独立性表现出不同的结果。其次,利用基于约束的方法构建马尔科夫等价类之后,通过不同结果进一步发现并区分三种结构,对马尔科夫等价类中部分未定向的边进一步定向。最后,在不同因果网络构成的线性高斯数据集和线性非高斯数据集上分别进行了实验,结果表明,所提算法不仅显著减少了马尔科夫等价类中无向边的数量,同时也有效地提高了因果关系定向的准确性。 展开更多
关键词 因果定向 贝叶斯网络 马尔科夫等价类 伪残差 独立性检验
在线阅读 下载PDF
基于个体-整体跨度调整的博弈粗糙群共识决策模型及其应用
14
作者 侯涵中 张超 李德玉 《计算机科学》 北大核心 2025年第2期158-164,共7页
群共识决策指在面对多个备选方案时,一组个体通过集体协商,调整不同个体的意见,以确保在达成共识的前提下解决问题的过程。以空气质量评估为例探索群共识模型。首先,采用直觉模糊数来对个体评价进行表示,同时提出新型映射函数来将实数... 群共识决策指在面对多个备选方案时,一组个体通过集体协商,调整不同个体的意见,以确保在达成共识的前提下解决问题的过程。以空气质量评估为例探索群共识模型。首先,采用直觉模糊数来对个体评价进行表示,同时提出新型映射函数来将实数转化为直觉模糊数。其次,提出调整个体与整体相对跨度的方法来达成共识,有助于快速锁定个体和整体的差异,从而对个体评价进行调整。然后,在达成共识的基础上,采用博弈粗糙集模型,通过权衡准确性与通用性来确定阈值。在提升性能的基础上,减少边界区域的大小,从而增加决策结果的准确性。最后,通过空气质量评价的实例,验证所提方法的可行性和有效性。综上所述,该模型的提出不仅丰富了相关理论体系,有效降低了群共识决策的风险,更为复杂决策问题的解决提供了一种可行的路径。 展开更多
关键词 粒计算 三支决策 群共识决策 直觉模糊数 博弈粗糙集
在线阅读 下载PDF
基于边缘增强的选择性特征融合肾癌三维CT图像分割
15
作者 王涛 白雪飞 王文剑 《计算机科学》 北大核心 2025年第3期41-49,共9页
针对肾癌三维CT图像存在病变区域多尺度、边缘像素稀疏、对比度低以及肿瘤形状复杂且不规则等问题,提出一种基于边缘增强的选择性特征融合肾癌三维CT图像分割网络(EE-SFF U-Net)。EE-SFF U-Net采用基于U-Net的对称编解码网络架构,编码... 针对肾癌三维CT图像存在病变区域多尺度、边缘像素稀疏、对比度低以及肿瘤形状复杂且不规则等问题,提出一种基于边缘增强的选择性特征融合肾癌三维CT图像分割网络(EE-SFF U-Net)。EE-SFF U-Net采用基于U-Net的对称编解码网络架构,编码路径中包含一个用于强化边缘信息的边缘增强模块,可有效挖掘、利用浅层特征信息以缓解边缘像素稀疏问题,同时避免小目标的漏检。此外,在网络的跳跃连接中,设计一个选择性特征融合模块,使得深浅层特征相互补充,实现不同信息的有效聚合。最后提出一个综合Generalized Dice Loss和Focal Loss的混合损失函数,利用动态权重调整策略,实现损失函数的优化训练,并降低病变区域多尺度和肿瘤形状大小不规则带来的影响。所提方法在保证病变区域整体定位准确的同时,强化对小目标特征信息的挖掘利用,从而提高分割的准确性和鲁棒性。在KiTS19公开数据集上的实验结果表明,与其他分割算法相比,该方法各项指标表现良好,分割性能有显著提升。 展开更多
关键词 肾癌三维CT分割 边缘增强 选择性特征融合 3D U-Net 深度学习
在线阅读 下载PDF
基于双向有序互信息的单调分类决策树算法 被引量:5
16
作者 许行 梁吉业 王宝丽 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第5期628-636,共9页
决策树是一种智能进行实例分类的数据挖掘方法,已被广泛应用于机器学习、数据挖掘、智能控制等人工智能领域.单调决策树可以解决属性具有单调序关系的分类问题,近年来引起了国内外研究者的广泛关注.Hu提出了基于优势关系的有序信息熵的... 决策树是一种智能进行实例分类的数据挖掘方法,已被广泛应用于机器学习、数据挖掘、智能控制等人工智能领域.单调决策树可以解决属性具有单调序关系的分类问题,近年来引起了国内外研究者的广泛关注.Hu提出了基于优势关系的有序信息熵的概念,并将其成功地运用于有序决策树的构造算法中,得到了较好的效果.在Hu的算法的基础上,利用双向的有序互信息生成不同的决策树,再集成其分类规则得到最后的决策结果,实验数据表明,相对于单向的有序分类树,此算法可以提高分类准确率,缩短分类规则的长度. 展开更多
关键词 有序互信息 决策树 单调分类 集成学习
在线阅读 下载PDF
基于主题多视图表示的零样本实体检索方法
17
作者 齐丹丹 王长征 +6 位作者 郭少茹 闫智超 胡志伟 苏雪峰 马博翔 李时钊 李茹 《广西师范大学学报(自然科学版)》 北大核心 2025年第3期23-34,共12页
零样本实体检索旨在将实体提及(mention)链接到训练阶段未见过的实体,在多种自然语言处理任务中起关键作用。然而现有方法依然存在2个问题:1)仅使用实体描述的前k个句子来构建实体的多视图表示,导致实体多视图语义冗余与缺失,很难充分... 零样本实体检索旨在将实体提及(mention)链接到训练阶段未见过的实体,在多种自然语言处理任务中起关键作用。然而现有方法依然存在2个问题:1)仅使用实体描述的前k个句子来构建实体的多视图表示,导致实体多视图语义冗余与缺失,很难充分学习提及与实体之间的匹配关系;2)仅以提及为中心构造正负例,对提及与实体之间的对比关系覆盖度较低,导致其匹配错误。针对以上2个问题,本文提出基于主题的多视图实体表示(Topic-MVER)方法。该方法基于主题构建实体的多视图表示,并使用对比学习建模提及与实体之间的3种关系,提升提及和实体对表示的匹配性。该方法在ZESHEL和MedMentions数据集上的Recall@1分别达到48.13%和73.86%,较基线模型分别提升2.73和1.21个百分点,验证了本文方法的有效性。 展开更多
关键词 实体检索 零样本 长文本 主题多视图 对比学习
在线阅读 下载PDF
一种融合伴随信息的网络表示学习模型 被引量:1
18
作者 杜航原 王文剑 白亮 《软件学报》 EI CSCD 北大核心 2023年第6期2749-2764,共16页
网络表示学习被认为是提高信息网络分析效率的关键技术之一,旨在将网络中每个节点映射为低维隐空间中的向量表示,并使这些向量高效的保持原网络的结构和特性.近年来,大量研究致力于网络拓扑和节点属性的深度挖掘,并在一些网络分析任务... 网络表示学习被认为是提高信息网络分析效率的关键技术之一,旨在将网络中每个节点映射为低维隐空间中的向量表示,并使这些向量高效的保持原网络的结构和特性.近年来,大量研究致力于网络拓扑和节点属性的深度挖掘,并在一些网络分析任务中取得了良好应用效果.事实上,在这两类关键信息之外,真实网络中广泛存在的伴随信息,反映了网络中复杂微妙的各种关系,对网络的形成和演化起着重要作用.为提高网络表示学习的有效性,提出了一种能够融合伴随信息的网络表示学习模型NRLIAI.该模型以变分自编码器(VAE)作为信息传播和处理的框架,在编码器中利用图卷积算子进行网络拓扑和节点属性的聚合与映射,在解码器中完成网络的重构,并融合伴随信息对网络表示学习过程进行指导.该模型克服了现有方法无法有效利用伴随信息的缺点,同时具有一定的生成能力,能减轻表示学习过程中的过拟合问题.在真实网络数据集上,通过节点分类和链路预测任务对NRLIAI模型与几种现有方法进行了对比实验,实验结果验证了该模型的有效性. 展开更多
关键词 网络表示学习 伴随信息 变分自编码器(VAE) 图卷积网络(GCN) 互信息
在线阅读 下载PDF
一种基于局部路径信息的重叠社区发现算法
19
作者 郑文萍 王宁 杨贵 《计算机科学》 CSCD 北大核心 2022年第12期155-162,共8页
重叠社区发现是复杂网络分析的主要任务之一。针对现有的基于局部扩展和优化的重叠社区发现方法受初始种子节点选择影响较大、适应度函数无法度量节点间多样的连接方式等问题,提出了一种基于局部路径信息的重叠社区发现算法(Local Path ... 重叠社区发现是复杂网络分析的主要任务之一。针对现有的基于局部扩展和优化的重叠社区发现方法受初始种子节点选择影响较大、适应度函数无法度量节点间多样的连接方式等问题,提出了一种基于局部路径信息的重叠社区发现算法(Local Path Information-based Overlapping Community Detection Algorithm,LPIO)。首先选取局部极大度点作为初始种子节点,并根据社区内节点邻域标签一致性更新社区的种子节点集,避免初始种子节点对算法性能的影响;然后为度量稀疏网络中节点间多样的连接方式,给出了基于局部路径信息的社区适应度函数,扩展种子节点集得到社区结构;最后计算未聚类节点与社区种子集之间的点不重复路径数量,得到未聚类节点与已有社区间的距离,为未聚类节点分配社区。在4个有标签网络和8个无标签网络上,与7个经典重叠社区发现算法进行对比,实验结果表明,所提算法在重叠标准互信息(ONMI)、F1分数、扩展模块度(EQ)等方面表现良好。 展开更多
关键词 重叠社区发现 局部扩展和优化 社区适应度 局部路径信息
在线阅读 下载PDF
一种基于社区专家信息的协同过滤推荐算法 被引量:28
20
作者 张凯涵 梁吉业 +1 位作者 赵兴旺 王智强 《计算机研究与发展》 EI CSCD 北大核心 2018年第5期968-976,共9页
协同过滤推荐算法由于不受特定领域知识限制、简单易实现等优点,得到了广泛的应用.但是,在实际应用中,该类算法往往面临着数据稀疏性、可扩展性、冷启动等问题.为了解决其中的用户冷启动问题,将用户社交信息和评分信息进行融合,提出了... 协同过滤推荐算法由于不受特定领域知识限制、简单易实现等优点,得到了广泛的应用.但是,在实际应用中,该类算法往往面临着数据稀疏性、可扩展性、冷启动等问题.为了解决其中的用户冷启动问题,将用户社交信息和评分信息进行融合,提出了一种基于社区专家信息的协同过滤推荐算法.首先,依据用户的社交关系将用户划分为不同的社区;其次,根据一定的准则确定各个社区的专家,并利用社交信息和评分信息对专家评分进行填充进而缓解稀疏性;最后,对冷启动用户根据其所属社区的专家信息进行预测评分.在数据集FilmTrust和Epinions上与已有协同过滤推荐算法进行了比较分析.实验结果表明,提出的算法可以有效缓解协同过滤推荐算法中的用户冷启动问题,并在平均绝对误差和均方根误差2个评价指标上优于已有算法. 展开更多
关键词 推荐系统 协同过滤 冷启动 社区 专家信息
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部