期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于YOLO v8-ABSeg的双孢蘑菇表型参数提取方法
1
作者 苗全龙 周扬 +2 位作者 李建涛 周延锁 李玉 《农业机械学报》 北大核心 2025年第3期158-168,共11页
针对双孢蘑菇采摘前人工获取其表型参数效率低、成本高的问题,提出了一种基于实例分割且适用于现代化工厂环境的双孢蘑菇表型参数提取方法。首先,对YOLO v8n-Seg实例分割模型进行改进,引入快速神经网络(Faster neural network,FasterNe... 针对双孢蘑菇采摘前人工获取其表型参数效率低、成本高的问题,提出了一种基于实例分割且适用于现代化工厂环境的双孢蘑菇表型参数提取方法。首先,对YOLO v8n-Seg实例分割模型进行改进,引入快速神经网络(Faster neural network,FasterNet),并采用局部卷积(Partial convolutions,PConv)减少冗余计算和内存访问,引入SE(Squeeze-and-excitation)注意力机制到特征融合网络中,增加了网络对输入信息中重要部分的关注度,降低无关信息的干扰,改进后的模型完成了对双孢蘑菇目标的实例分割。最后,基于分割结果,提出了双孢蘑菇子实体4种表型参数的提取方法,包括菇盖直径、菇盖圆度、菇盖白度以及菇盖表面色斑。实验结果表明,YOLO v8-ABSeg模型在自建双孢蘑菇数据集上的mask精度比原模型提高了1.6个百分点,且参数量、浮点数运算量和内存占用量分别降低了38.7%、25.0%和36.8%,帧率提高了11.3%。此外,双孢蘑菇表型参数计算结果与人工测量结果误差小于10%。该方法可应用于双孢蘑菇表型参数的自动化获取,为生长模型建立、在线实时环境控制等提供技术基础。 展开更多
关键词 双孢蘑菇 表型参数提取 实例分割 轻量化 注意力机制 YOLO v8
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部