期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于GA-BP神经网络算法的FDM 3D打印制件拉伸性能预测 被引量:7
1
作者 白鹤 赵明侠 +4 位作者 袁一如 刘亚明 何石磊 庞瑞 郭晓东 《塑料工业》 CAS CSCD 北大核心 2022年第9期192-197,共6页
为进一步研究熔融沉积成型(FDM)3D打印制件力学性能与工艺参数之间的关系,试验以聚乳酸(PLA)为材料,参考正交试验和神经网络模型设计原则,利用遗传算法(GA)对反向传播(BP)神经网络初始值进行优化,建立GA-BP神经网络模型,以分层厚度、填... 为进一步研究熔融沉积成型(FDM)3D打印制件力学性能与工艺参数之间的关系,试验以聚乳酸(PLA)为材料,参考正交试验和神经网络模型设计原则,利用遗传算法(GA)对反向传播(BP)神经网络初始值进行优化,建立GA-BP神经网络模型,以分层厚度、填充密度、喷嘴温度、填充速度以及外壳厚度为输入层参数,拉伸强度为输出层参数进行训练和预测,并分析其预测精度。通过对GA-BP和BP神经网络模型的预测结果进行对比发现,GA-BP神经网络模型预测值与测试实际值更为接近,误差平均值为2.27%,而BP神经网络模型预测误差平均值为4.10%,且GA-BP神经网络模型评价指标值均优于BP神经网络模型,故GA-BP神经网络模型预测精度更高,可为提升FDM 3D打印制件力学性能,优化成型工艺,指导工业生产提供参考。 展开更多
关键词 遗传算法-反向传播神经网络 熔融沉积成型 拉伸性能 工艺参数 预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部