期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
最小风险贝叶斯决策的二值化人脸识别算法 被引量:3
1
作者 曾岳 冯大政 付达杰 《计算机工程与设计》 CSCD 北大核心 2011年第10期3511-3513,共3页
提出了一种最小风险贝叶斯决策的二值化人脸识别算法,该算法通过设定图像灰度级的阈值对图像进行二值化,统计其出现的频率,计算其类条件概率密度,根据图像的相似性估计其损失函数,利用贝叶斯公式求最小风险,最后根据最小风险判断其所属... 提出了一种最小风险贝叶斯决策的二值化人脸识别算法,该算法通过设定图像灰度级的阈值对图像进行二值化,统计其出现的频率,计算其类条件概率密度,根据图像的相似性估计其损失函数,利用贝叶斯公式求最小风险,最后根据最小风险判断其所属类别。该方法克服了传统贝叶斯方法难求类内和类间协方差矩阵的缺点,简单易用。实验结果表明,该方法具有可行性,比传统的基于代数的人脸识别算法(PCA、LDA和PCA+LDA)的识别率高,并能有效减少相似类的重叠。 展开更多
关键词 贝叶斯 人脸识别 后验概率 二值化 最小风险
在线阅读 下载PDF
一种自适应加权变形的2DPCA人脸识别方法 被引量:4
2
作者 曾岳 冯大政 《计算机科学》 CSCD 北大核心 2011年第11期252-256,共5页
为了充分利用图像矩阵的局部信息和更多的鉴别信息,以提高2DPCA的识别率,提出了一种自适应加权变形的2DPCA人脸识别方法。该方法将人脸图像矩阵分块,然后利用变形的2DPCA方法提取特征,接着自适应地计算每个分块在分类中的权值,最后根据... 为了充分利用图像矩阵的局部信息和更多的鉴别信息,以提高2DPCA的识别率,提出了一种自适应加权变形的2DPCA人脸识别方法。该方法将人脸图像矩阵分块,然后利用变形的2DPCA方法提取特征,接着自适应地计算每个分块在分类中的权值,最后根据类别的权值大小进行分类。在ORL人脸库中进行的实验研究表明,该方法在正确识别率和识别时间上更优于传统的2DPCA和模块化2DPCA。 展开更多
关键词 自适应 人脸识别 识别率 分块
在线阅读 下载PDF
一种基于人脸垂直对称性的变形2DPCA算法 被引量:4
3
作者 曾岳 冯大政 《计算机工程与科学》 CSCD 北大核心 2011年第7期74-79,共6页
本文分析了人脸的对称性和主成分分析法(PCA)、二维主成分分析法(2DPCA)的特性,证明了2DPCA协方差矩阵就是PCA协方差矩阵的主角线的平均值,同时表明2DPCA减少了对人脸识别有用的协方差信息。提出了一种基于人脸垂直对称性的变形2DPCA算... 本文分析了人脸的对称性和主成分分析法(PCA)、二维主成分分析法(2DPCA)的特性,证明了2DPCA协方差矩阵就是PCA协方差矩阵的主角线的平均值,同时表明2DPCA减少了对人脸识别有用的协方差信息。提出了一种基于人脸垂直对称性的变形2DPCA算法(S2DPCA),该算法最大程度地利用了协方差鉴别信息,用更少的系数表示一张人脸图像。通过在ORL的实验比较表明,该算法与PCA算法相比降低了计算复杂性,与2DPCA方法和PCA方法相比提高了人脸识别率,在识别率方面优于传统算法(PCA(Eigenfaces)、ICA、Kernel Eigenfaces),同时也压缩了人脸的存储空间。 展开更多
关键词 主成分分析法(PCA) 二维主成分分析法(2DPCA) 人脸识别 人脸表示
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部