期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于优化的VMD融合信息熵和FA_PNN的风电机组齿轮箱故障诊断 被引量:24
1
作者 党建 罗燚 +3 位作者 田录林 田琦 王伟博 贾嵘 《太阳能学报》 EI CAS CSCD 北大核心 2021年第1期198-204,共7页
针对风电机组齿轮箱在故障信号处理、特征提取和故障诊断存在的问题,提出一种基于优化的变分模态分解(VMD)融合信息熵和萤火虫优化的概率神经网络(FAPNN)的风电机组齿轮箱故障诊断方法。首先利用皮尔逊相关系数法来确定VMD的分解数量和... 针对风电机组齿轮箱在故障信号处理、特征提取和故障诊断存在的问题,提出一种基于优化的变分模态分解(VMD)融合信息熵和萤火虫优化的概率神经网络(FAPNN)的风电机组齿轮箱故障诊断方法。首先利用皮尔逊相关系数法来确定VMD的分解数量和惩罚因子,并利用VMD分解齿轮箱振动信号获取多个固有模态分量,在此基础上融合时域、频域及时频域等信号故障特征熵,最后用FAPNN网络进行故障识别分类,仿真结果验证了所提出算法在风电机组齿轮箱早期故障诊断研究中的有效性和可行性。 展开更多
关键词 风电机组 故障诊断 特征提取 融合信息熵 概率神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部