期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于迁移学习的苹果落叶病识别与应用 被引量:13
1
作者 郭惠萍 曹亚州 +4 位作者 王晨思 荣麟瑞 李怡 王霆伟 杨福增 《农业工程学报》 EI CAS CSCD 北大核心 2024年第3期184-192,共9页
为解决现有卷积神经网络苹果叶片病害识别模型泛化能力弱,模型体积较大等问题,该研究提出一种基于改进MobileNetV3苹果落叶病识别模型。以健康叶片和常见苹果落叶病为研究对象,包括斑点落叶病、灰斑病、褐斑病、锈病4种,每种病害2级,共... 为解决现有卷积神经网络苹果叶片病害识别模型泛化能力弱,模型体积较大等问题,该研究提出一种基于改进MobileNetV3苹果落叶病识别模型。以健康叶片和常见苹果落叶病为研究对象,包括斑点落叶病、灰斑病、褐斑病、锈病4种,每种病害2级,共9类特征,通过改进网络的注意力模块、全连接层及算子,结合迁移学习的训练方式,构建苹果落叶病识别模型。在扩充前后的数据集上对比不同的学习方式、学习率和注意力模块等对模型的影响,验证模型的识别性能。试验结果表明:采用迁移学习的方式,在训练50轮达曲线收敛,比全新学习的准确率增加6.74~10.79个百分点;使用引入的ET(efficient channel attention-tanh)注意力模块,网络损失曲线更加平滑,模型的参数量更少,模型体积减小了48%,提高了模型的泛化能力;在扩充数据集上,学习率为0.000 1时,结合迁移学习的训练方式,改进MobileNetV3(ET3-MobileNetV3)苹果落叶病识别模型,平均准确率能达到95.62%,模型体积6.29 MB。将模型部署到喷药设备上,可实现基于苹果叶片病害识别的变量喷施,该研究可为苹果叶片病害的检测与果园的现代化管理提供参考。 展开更多
关键词 病害 图像识别 苹果落叶病 ET注意力模块 改进MobileNetV3 迁移学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部