期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于卷积神经网络和二进制K-means的图像快速聚类
被引量:
2
1
作者
柯圣财
李弼程
+2 位作者
唐永旺
吴志兵
万建平
《数据采集与处理》
CSCD
北大核心
2017年第5期970-979,共10页
当前主流的图像聚类方法采用的视觉特征缺乏自主学习能力,导致其图像表达能力不强,而且传统的聚类算法计算复杂度较高,聚类效率低,难以适应大数据环境。针对这些问题,本文提出了一种基于卷积神经网络和二进制K-means的图像快速聚类方法...
当前主流的图像聚类方法采用的视觉特征缺乏自主学习能力,导致其图像表达能力不强,而且传统的聚类算法计算复杂度较高,聚类效率低,难以适应大数据环境。针对这些问题,本文提出了一种基于卷积神经网络和二进制K-means的图像快速聚类方法。首先,利用卷积神经网络学习图像内容的内在隐含关系,得到图像高阶特征,增强特征的视觉表达能力和区分性;然后,利用哈希方法将高维图像特征映射为低维二进制哈希码,并通过对聚类中心构造多索引哈希表来加速寻找最近的聚类中心,以降低时间复杂度;最后,利用二进制K-means完成二进制哈希码的快速聚类。在ImageNet-1000图像集上的实验结果表明,本文方法能够有效地增强图像特征的表达能力、提高图像聚类效率、性能优于当前主流方法。
展开更多
关键词
深度学习
图像聚类
卷积神经网络
二进制K-means
多索引哈希
在线阅读
下载PDF
职称材料
题名
基于卷积神经网络和二进制K-means的图像快速聚类
被引量:
2
1
作者
柯圣财
李弼程
唐永旺
吴志兵
万建平
机构
解放军信息工程大学信息系统工程学院
华桥大学计算机科学与技术学院
江南计算技术
研究
所
西安卫星测控研究中心
出处
《数据采集与处理》
CSCD
北大核心
2017年第5期970-979,共10页
基金
国家自然科学基金(60872142)资助项目
文摘
当前主流的图像聚类方法采用的视觉特征缺乏自主学习能力,导致其图像表达能力不强,而且传统的聚类算法计算复杂度较高,聚类效率低,难以适应大数据环境。针对这些问题,本文提出了一种基于卷积神经网络和二进制K-means的图像快速聚类方法。首先,利用卷积神经网络学习图像内容的内在隐含关系,得到图像高阶特征,增强特征的视觉表达能力和区分性;然后,利用哈希方法将高维图像特征映射为低维二进制哈希码,并通过对聚类中心构造多索引哈希表来加速寻找最近的聚类中心,以降低时间复杂度;最后,利用二进制K-means完成二进制哈希码的快速聚类。在ImageNet-1000图像集上的实验结果表明,本文方法能够有效地增强图像特征的表达能力、提高图像聚类效率、性能优于当前主流方法。
关键词
深度学习
图像聚类
卷积神经网络
二进制K-means
多索引哈希
Keywords
deep learning
image clustering
convolutional neural network
binary K-means
multi-index hashing
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于卷积神经网络和二进制K-means的图像快速聚类
柯圣财
李弼程
唐永旺
吴志兵
万建平
《数据采集与处理》
CSCD
北大核心
2017
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部