目的探讨伴破骨样巨细胞的胰腺未分化癌(undifferentiated carcinoma with osteoclast-like giant cells of the pancreas,UCOGCP)的临床病理学特征。方法回顾性分析5例UCOGCP的临床病理学特征、免疫表型及分子特征。采用免疫组化、ARMS...目的探讨伴破骨样巨细胞的胰腺未分化癌(undifferentiated carcinoma with osteoclast-like giant cells of the pancreas,UCOGCP)的临床病理学特征。方法回顾性分析5例UCOGCP的临床病理学特征、免疫表型及分子特征。采用免疫组化、ARMS-PCR(amplification refractory mutation system-polymerase chain reaction)技术检测UCOGCP的免疫组化及分子特征。结果5例UCOGCP患者中男性3例,女性2例,平均年龄55.6岁,其中4例为手术切除标本,1例为EUS-FNA标本;眼观:肿瘤最大径5.5~8.0 cm,切面灰黄色,实性质硬,局部可见坏死样物,部分病例可见白色骨样物质沉积。镜检:肿瘤细胞通常在出血或坏死区域附近,细胞黏附性差。肿瘤细胞包括三类:肿瘤性单核细胞、非肿瘤性的卵圆形或梭形单核组织细胞及破骨样巨细胞,细胞混杂分布,部分病例可见骨样基质,病理性核分裂象多见,2例合并有导管腺癌成分,1例可见神经侵犯,1例门静脉内可见癌栓,3例发生肝脏转移。免疫表型:5例单核组织细胞及破骨样巨细胞vimentin、CD68均阳性;CK(AE1/AE3)、CK7、EMA为局灶阳性(4/5);HMB-45、SMA、desmin、S-100、SOX10、SS18-SSX、HMB-45、Myogenin均阴性;Ki67增殖指数为20%~50%。其中1例进行了KRAS、NRAS、BRAF基因及TERT启动子突变检测,检测到KRAS G12D位点突变,未检测到NRAS、BRAF及TERT启动子区突变。结论UCOGCP相对较少见,此类型肿瘤的临床行为尚无法准确预测,需要积累更多病例准确了解其生物学行为。展开更多
目的探讨H3.3G34W、p63及SATB2在骨巨细胞瘤(giant cell tumor of bone,GCTB)中的表达情况及其联合应用对GCTB的诊断作用和价值。方法收集西安交通大学附属红会医院病理科2020年至2022年诊断的54例GCTB、83例非骨巨细胞瘤(non-giant cel...目的探讨H3.3G34W、p63及SATB2在骨巨细胞瘤(giant cell tumor of bone,GCTB)中的表达情况及其联合应用对GCTB的诊断作用和价值。方法收集西安交通大学附属红会医院病理科2020年至2022年诊断的54例GCTB、83例非骨巨细胞瘤(non-giant cell tumor of bone,NGCTB)(包含14例动脉瘤样骨囊肿、16例软骨母细胞瘤和53例非骨化性纤维瘤)患者的样本和病历资料,采用免疫组织化学EliVision法检测H3.3G34W、p63及SATB2的表达情况。通过χ^(2)检验判断H3.3G34W、p63及SATB2的阳性率在各组间是否存在统计学差异;通过Logistic回归分析建立包括H3.3G34W、p63及SATB2的联合诊断模型,通过受试者工作特征(ROC)曲线分析评价模型的诊断价值。结果H3.3G34W、p63及SATB2在GCTB组中阳性率分别为81.5%、90.7%、92.6%;在NGCTB组中阳性率分别为2.4%、28.9%、62.7%。与NGCTB组相比,GCTB组患者年龄显著较大[(41.222±14.849)vs.(16.566±9.439);P<0.001],女性比男性患病率更高(51.9%vs.48.1%,P<0.001)。与NGCTB组相比,GCTB组中H3.3G34W(81.5%vs.2.4%,P<0.001);p63(90.7%vs.28.9%,P<0.001)和SATB2(92.6%vs.62.7%,P<0.001)的阳性率更高。单因素Logistic回归分析构建单因素预测模型,同时行ROC曲线分析,表明年龄(AUC=92.9%,P<0.001)、性别(AUC=64.5%,P=0.004)、H3.3G34W阳性率(AUC=89.5%,P<0.001)、p63阳性率(AUC=80.9%,P<0.001)、SATB2阳性率(AUC=65.0%,P=0.003)是GCTB诊断的独立预测因素。进一步的多因素Logistic回归分析构建混合预测模型,并行ROC曲线分析,发现混合模型展现出比单因素模型更好的预测价值(AUC=98.4%,P<0.001)。结论H3.3G34W、p63及SATB2是有效诊断GCTB的分子标记物,且三者联合应用更能提高GCTB的诊断预测效能。展开更多
文摘目的探讨H3.3G34W、p63及SATB2在骨巨细胞瘤(giant cell tumor of bone,GCTB)中的表达情况及其联合应用对GCTB的诊断作用和价值。方法收集西安交通大学附属红会医院病理科2020年至2022年诊断的54例GCTB、83例非骨巨细胞瘤(non-giant cell tumor of bone,NGCTB)(包含14例动脉瘤样骨囊肿、16例软骨母细胞瘤和53例非骨化性纤维瘤)患者的样本和病历资料,采用免疫组织化学EliVision法检测H3.3G34W、p63及SATB2的表达情况。通过χ^(2)检验判断H3.3G34W、p63及SATB2的阳性率在各组间是否存在统计学差异;通过Logistic回归分析建立包括H3.3G34W、p63及SATB2的联合诊断模型,通过受试者工作特征(ROC)曲线分析评价模型的诊断价值。结果H3.3G34W、p63及SATB2在GCTB组中阳性率分别为81.5%、90.7%、92.6%;在NGCTB组中阳性率分别为2.4%、28.9%、62.7%。与NGCTB组相比,GCTB组患者年龄显著较大[(41.222±14.849)vs.(16.566±9.439);P<0.001],女性比男性患病率更高(51.9%vs.48.1%,P<0.001)。与NGCTB组相比,GCTB组中H3.3G34W(81.5%vs.2.4%,P<0.001);p63(90.7%vs.28.9%,P<0.001)和SATB2(92.6%vs.62.7%,P<0.001)的阳性率更高。单因素Logistic回归分析构建单因素预测模型,同时行ROC曲线分析,表明年龄(AUC=92.9%,P<0.001)、性别(AUC=64.5%,P=0.004)、H3.3G34W阳性率(AUC=89.5%,P<0.001)、p63阳性率(AUC=80.9%,P<0.001)、SATB2阳性率(AUC=65.0%,P=0.003)是GCTB诊断的独立预测因素。进一步的多因素Logistic回归分析构建混合预测模型,并行ROC曲线分析,发现混合模型展现出比单因素模型更好的预测价值(AUC=98.4%,P<0.001)。结论H3.3G34W、p63及SATB2是有效诊断GCTB的分子标记物,且三者联合应用更能提高GCTB的诊断预测效能。