近年来,大语言模型(large language model,LLM)作为深度学习网络技术的关键分支,在自然语言处理(natural language processing,NLP)领域取得了一系列突破性成就,并被广泛采用.然而,在其包括预训练、微调和实际部署在内的完整生命周期中...近年来,大语言模型(large language model,LLM)作为深度学习网络技术的关键分支,在自然语言处理(natural language processing,NLP)领域取得了一系列突破性成就,并被广泛采用.然而,在其包括预训练、微调和实际部署在内的完整生命周期中,多种安全威胁和隐私泄露的风险相继被发现,引起了学术和工业界越来越多的关注.首先以LLM发展过程中出现的预训练-微调范式、预训练-提示学习范式和预训练-指令微调范式为线索,梳理了针对LLM的常规安全威胁,即3种对抗攻击(对抗样本攻击、后门攻击、投毒攻击)的代表性研究,接着总结了一些最新工作披露的新型安全威胁,然后介绍了LLM的隐私风险及其研究进展.相关内容有助于LLM的研究和部署者在模型设计、训练及应用过程中,识别、预防和缓解这些威胁与风险,同时实现模型性能与安全及隐私保护之间的平衡.展开更多
基于深度学习的目标检测算法已广泛应用,与此同时最近的一系列研究表明现有的目标检测算法容易受到对抗性攻击的威胁,造成检测器失效.然而,聚焦于自动驾驶场景下对抗攻击的迁移性研究较少,并且鲜有研究关注该场景下对抗攻击的隐蔽性.针...基于深度学习的目标检测算法已广泛应用,与此同时最近的一系列研究表明现有的目标检测算法容易受到对抗性攻击的威胁,造成检测器失效.然而,聚焦于自动驾驶场景下对抗攻击的迁移性研究较少,并且鲜有研究关注该场景下对抗攻击的隐蔽性.针对现有研究的不足,将对抗样本的优化类比于机器学习模型的训练过程,设计了提升攻击迁移性的算法模块.并且通过风格迁移的方式和神经渲染(neural rendering)技术,提出并实现了迁移隐蔽攻击(transferable and stealthy attack,TSA)方法.具体来说,首先将对抗样本进行重复拼接,结合掩膜生成最终纹理,并将其应用于整个车辆表面.为了模拟真实的环境条件,使用物理变换函数将渲染的伪装车辆嵌入逼真的场景中.最后,通过设计的损失函数优化对抗样本.仿真实验表明,TSA方法在攻击迁移能力上超过了现有方法,并在外观上具有一定的隐蔽性.此外,通过物理域实验进一步证明了TSA方法在现实世界中能够保持有效的攻击性能.展开更多
基金国家自然科学基金项目(62202090,62173101)辽宁省博士启动基金(2022-BS-077)+3 种基金中央高校基本科研业务费(N2417006)辽宁网络安全执法协同创新中心课题(XTCX2024-015)资助by Liaoning Province Natural Science Foundation Medical-Engineering Cross Joint Fund under Grant 2022-YGJC-24by the Fundamental Research Funds for the Central Universities under Grant N2217009.
文摘近年来,大语言模型(large language model,LLM)作为深度学习网络技术的关键分支,在自然语言处理(natural language processing,NLP)领域取得了一系列突破性成就,并被广泛采用.然而,在其包括预训练、微调和实际部署在内的完整生命周期中,多种安全威胁和隐私泄露的风险相继被发现,引起了学术和工业界越来越多的关注.首先以LLM发展过程中出现的预训练-微调范式、预训练-提示学习范式和预训练-指令微调范式为线索,梳理了针对LLM的常规安全威胁,即3种对抗攻击(对抗样本攻击、后门攻击、投毒攻击)的代表性研究,接着总结了一些最新工作披露的新型安全威胁,然后介绍了LLM的隐私风险及其研究进展.相关内容有助于LLM的研究和部署者在模型设计、训练及应用过程中,识别、预防和缓解这些威胁与风险,同时实现模型性能与安全及隐私保护之间的平衡.
文摘基于深度学习的目标检测算法已广泛应用,与此同时最近的一系列研究表明现有的目标检测算法容易受到对抗性攻击的威胁,造成检测器失效.然而,聚焦于自动驾驶场景下对抗攻击的迁移性研究较少,并且鲜有研究关注该场景下对抗攻击的隐蔽性.针对现有研究的不足,将对抗样本的优化类比于机器学习模型的训练过程,设计了提升攻击迁移性的算法模块.并且通过风格迁移的方式和神经渲染(neural rendering)技术,提出并实现了迁移隐蔽攻击(transferable and stealthy attack,TSA)方法.具体来说,首先将对抗样本进行重复拼接,结合掩膜生成最终纹理,并将其应用于整个车辆表面.为了模拟真实的环境条件,使用物理变换函数将渲染的伪装车辆嵌入逼真的场景中.最后,通过设计的损失函数优化对抗样本.仿真实验表明,TSA方法在攻击迁移能力上超过了现有方法,并在外观上具有一定的隐蔽性.此外,通过物理域实验进一步证明了TSA方法在现实世界中能够保持有效的攻击性能.