针对传统D-S证据理论中基于识别率和误识率构造的基本概率赋值函数(Basic Probability Assignment,BPA)没有考虑训练样本分布的缺点,提出了一种将整体错误率分配给除了正确判别命题以外各个焦元的BPA构造新方法.针对传统D-S证据理论中...针对传统D-S证据理论中基于识别率和误识率构造的基本概率赋值函数(Basic Probability Assignment,BPA)没有考虑训练样本分布的缺点,提出了一种将整体错误率分配给除了正确判别命题以外各个焦元的BPA构造新方法.针对传统D-S证据理论中所采用的基于正交和运算的合成规则不能融合矛盾证据的缺陷,提出一种能融合矛盾证据的大概率赋值法.在此改进D-S证据理论的基础上,给出了两分类器决策层融合流程和多分类器决策层融合系统.在ORL和Yale数据库上的实验结果表明,对几种典型分类器的决策层融合提高了系统人脸识别的正确率,且改进D-S证据理论比传统D-S和投票融合方法的正确率更高.展开更多
针对已有群智感知服务中的社区发现方法没有考虑边的权重和方向性等问题,提出了一种基于最优路径的社区划分算法(community detection algorithm based on node optimal path,CDOP),通过计算网内移动节点间的最优路径树(OPT)、相似指数(...针对已有群智感知服务中的社区发现方法没有考虑边的权重和方向性等问题,提出了一种基于最优路径的社区划分算法(community detection algorithm based on node optimal path,CDOP),通过计算网内移动节点间的最优路径树(OPT)、相似指数(SI)和社区离散指数(community dispersion index,DS)等参数,实现了对有向加权网络中服务社区的合理划分。实验结果表明,在面向MIT数据集中,算法的准确性平均达到94.2%左右,高于其他已有模型10.9%左右。此外,该算法在面向其他不同类型的网络数据集中仍然具有良好的准确性,进一步说明了算法的有效性和扩展性。展开更多
文摘针对传统D-S证据理论中基于识别率和误识率构造的基本概率赋值函数(Basic Probability Assignment,BPA)没有考虑训练样本分布的缺点,提出了一种将整体错误率分配给除了正确判别命题以外各个焦元的BPA构造新方法.针对传统D-S证据理论中所采用的基于正交和运算的合成规则不能融合矛盾证据的缺陷,提出一种能融合矛盾证据的大概率赋值法.在此改进D-S证据理论的基础上,给出了两分类器决策层融合流程和多分类器决策层融合系统.在ORL和Yale数据库上的实验结果表明,对几种典型分类器的决策层融合提高了系统人脸识别的正确率,且改进D-S证据理论比传统D-S和投票融合方法的正确率更高.
文摘针对已有群智感知服务中的社区发现方法没有考虑边的权重和方向性等问题,提出了一种基于最优路径的社区划分算法(community detection algorithm based on node optimal path,CDOP),通过计算网内移动节点间的最优路径树(OPT)、相似指数(SI)和社区离散指数(community dispersion index,DS)等参数,实现了对有向加权网络中服务社区的合理划分。实验结果表明,在面向MIT数据集中,算法的准确性平均达到94.2%左右,高于其他已有模型10.9%左右。此外,该算法在面向其他不同类型的网络数据集中仍然具有良好的准确性,进一步说明了算法的有效性和扩展性。