期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
自编码器结合持续学习:现状、挑战与展望 被引量:2
1
作者 吴美君 杨新 +2 位作者 潘超凡 李天瑞 寇纲 《计算机学报》 北大核心 2025年第2期317-357,共41页
近年来,许多研究利用自编码器进行增量式学习,以在面对新的数据分布、类别或任务时平衡模型的稳定性与可塑性。这些研究从多个角度推动了持续学习的发展。同时,持续学习的范式通过优化策略促进了自编码器架构的改进,实现了自编码器与持... 近年来,许多研究利用自编码器进行增量式学习,以在面对新的数据分布、类别或任务时平衡模型的稳定性与可塑性。这些研究从多个角度推动了持续学习的发展。同时,持续学习的范式通过优化策略促进了自编码器架构的改进,实现了自编码器与持续学习之间的相互促进。目前,自编码器与持续学习的结合在多个领域都影响深远。本文对近五年来的相关研究进行了综述,概述了自编码器的类型与特点,持续学习的常见增量场景与主要挑战,并对二者在不同领域的应用情况进行了详细介绍。最后,本综述对当前研究的优点、局限性以及未来应用的前景进行了总结,旨在为推动持续学习与自编码器的结合与发展提供有价值的参考。 展开更多
关键词 持续学习 自编码器 灾难性遗忘 知识传输 模型优化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部